Consultar por Lenguaje
Subir un nivel |
2024
Tesis
Materias > Ciencias Sociales
Universidad Internacional Iberoamericana México > Investigación > Tesis Doctorales
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Tesis Doctorales
Cerrado
Francés
La problématique posée par le handicap a été et reste une préoccupation majeure des pouvoirs publics car elle véhicule des représentations conduisant à des attitudes répréhensibles. Depuis l'Antiquité, la prise en charge des personnes handicapées est dépendante de la stigmatisation liée à des politiques sociales contextualisées. Pour ce faire, afin de rendre efficaces les interventions des acteurs et de définir des projets et programmes susceptibles d'améliorer la qualité de vie des personnes handicapées, la communauté scientifique a jugé opportun de procéder à des classifications du handicap : la classification internationale des maladies chroniques (CIM), la Classification internationale du handicap (CIH) et la Classification internationale du fonctionnement (CIF). Ainsi, on note une nette ressemblance entre les composantes de la qualité de vie et celles de la CIF. Cet état de fait est corroboré par les résultats des enquêtes qui militent en faveur de la mobilisation des dimensions objectives et subjectives de la qualité de vie. C'est dans ce contexte que l'étude révèle que 59% des personnes interrogées perçoivent la bonne santé comme l'équivalent d'une bonne qualité de vie, tandis que 92,3% la considèrent comme sa dimension la plus importante. Par conséquent, les politiques publiques d'action sociale traduites en projets et programmes doivent sans aucun doute porter sur la santé au sens large afin de contribuer à l'amélioration de la qualité de vie des personnes handicapées. De manière explicite, chaque personne handicapée définira son projet de vie axé sur : la réadaptation à base communautaire, l'approche territoriale, l'autonomisation et l'érection d'infrastructures sociales.
metadata
SAMB, Sérigne Mapathé
mail
serigne.samb@doctorado.unib.org
(2024)
Analyse des politiques publiques d'action sociale sur la qualité de vie des personnes handicapées du Sénégal: le cas du département de bignona.
Doctoral thesis, SIN ESPECIFICAR.
Tesis Materias > Ciencias Sociales Universidad Internacional Iberoamericana Puerto Rico > Investigación > Tesis Doctorales Cerrado Francés L’économie ivoirienne a connu un dynamisme au cours de la dernière décennie, marqué par des taux de croissance du Produit Intérieur Brut (PIB) successifs de 7% en moyenne. Cependant, le pays reste confronté au problème de sous-emploi notamment des jeunes, en dépit d’un faible niveau de taux de chômage (2,8% en moyenne), voilant une précarité des emplois et un chômage accru chez les jeunes diplômés. D’où la nécessité de disséquer les composantes du marché du travail afin d’élaborer des politiques publiques d’emploi plus adaptées.La présente recherche décrit la structure actuelle du marché du travail, ses interactions avec les différents acteurs, avec un focus sur l’efficacité de certains programmes et projets d’emploi. La méthodologie utilisée est basée sur les méthodes statistiques quantitatives d’analyse descriptive, notamment l’analyse factorielle. Par ailleurs, l’analyse de l’efficacité des projets et programmes s’est faite à l’aide des outils d’analyse de la science indicamétrique. Les données de cette recherche proviennent de l’Enquête Nationale sur l’Emploi (ENE) réalisée en 2019 auprès de plus de 10 000 ménages. Les analyses mettent en exergue les principales caractéristiques suivantes du marché du travail ivoirien :-Les femmes sont désavantagées sur le marché du travail par rapport aux hommes, notamment en milieu urbain ;-Les personnes moins instruites ou n’ayant aucun diplôme sont plus insérées que celles plus instruites ;-Les jeunes détenteurs de diplômes de l’enseignement technique et professionnel sont plus insérés que leurs homologues détenteurs de diplômes de l’enseignement général ;-Le chômage est plus élevé chez les jeunes de moins de 35 ans par rapport aux autres groupes d’âge ;-Le chômage est plus élevé chez les personnes célibataires par rapport à celles en union ;-La prise en compte des capacités intrinsèques des gestionnaires des projets accroit significativement leur probabilité de succès. metadata Meite, Inza mail mitmsginza@yahoo.fr (2024) Structure du marché du travail en Côte d’Ivoire : une étude descriptive à la lumière des programmes et projets publics d’emploi. Doctoral thesis, SIN ESPECIFICAR.
<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,
Alemany Iturriaga
<a class="ep_document_link" href="/15625/1/s41598-024-74127-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the physiological responses of plants mostly crops to drought stress have been revealed through the use of complex algorithms like gradient boosting, support vector machines (SVM), recurrent neural network (RNN), and long short-term memory (LSTM), combined with a thorough examination of the TYRKC and RBR-E3 domains in stress-associated signaling proteins across a range of crop species. Modern resources were used in this study, including the UniProt protein database for crop physiochemical properties associated with specific signaling domains and the SMART database for signaling protein domains. These insights were then applied to deep learning and machine learning techniques after careful data processing. The rigorous metric evaluations and ablation analysis that typified the study’s approach highlighted the algorithms’ effectiveness and dependability in recognizing and classifying stress events. Notably, the accuracy of SVM was 82%, while gradient boosting and RNN showed 96%, and 94%, respectively and LSTM obtained an astounding 97% accuracy. The study observed these successes but also highlights the ongoing obstacles to AI adoption in agriculture, emphasizing the need for creative thinking and interdisciplinary cooperation. In addition to its scholarly value, the collected data has significant implications for improving resource efficiency, directing precision agricultural methods, and supporting global food security programs. Notably, the gradient boosting and LSTM algorithm outperformed the others with an exceptional accuracy of 96% and 97%, demonstrating their potential for accurate stress categorization. This work highlights the revolutionary potential of AI to completely disrupt the agricultural industry while simultaneously advancing our understanding of plant stress responses.
Tariq Ali mail , Saif Ur Rehman mail , Shamshair Ali mail , Khalid Mahmood mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Tahir Khurshaid mail , Imran Ashraf mail ,
Ali
<a href="/15198/1/nutrients-16-03859.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Carotenoids Intake and Cardiovascular Prevention: A Systematic Review
Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.
Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,
Sumalla Cano
<a href="/15441/1/journal.pone.0313835.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
StackIL10: A stacking ensemble model for the improved prediction of IL-10 inducing peptides
Interleukin-10, a highly effective cytokine recognized for its anti-inflammatory properties, plays a critical role in the immune system. In addition to its well-documented capacity to mitigate inflammation, IL-10 can unexpectedly demonstrate pro-inflammatory characteristics under specific circumstances. The presence of both aspects emphasizes the vital need to identify the IL-10-induced peptide. To mitigate the drawbacks of manual identification, which include its high cost, this study introduces StackIL10, an ensemble learning model based on stacking, to identify IL-10-inducing peptides in a precise and efficient manner. Ten Amino-acid-composition-based Feature Extraction approaches are considered. The StackIL10, stacking ensemble, the model with five optimized Machine Learning Algorithm (specifically LGBM, RF, SVM, Decision Tree, KNN) as the base learners and a Logistic Regression as the meta learner was constructed, and the identification rate reached 91.7%, MCC of 0.833 with 0.9078 Specificity. Experiments were conducted to examine the impact of various enhancement techniques on the correctness of IL-10 Prediction. These experiments included comparisons between single models and various combinations of stacking-based ensemble models. It was demonstrated that the model proposed in this study was more effective than singular models and produced satisfactory results, thereby improving the identification of peptides that induce IL-10.
Salman Sadullah Usmani mail , Izaz Ahmmed Tuhin mail , Md. Rajib Mia mail , Md. Monirul Islam mail , Imran Mahmud mail , Carlos Eduardo Uc Ríos mail carlos.uc@unini.edu.mx, Henry Fabian Gongora mail henry.gongora@uneatlantico.es, Imran Ashraf mail , Md. Abdus Samad mail ,
Usmani
<a class="ep_document_link" href="/15444/1/s41598-024-79106-7.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
With the rapid increase of users over social media, cyberbullying, and hate speech problems have arisen over the past years. Automatic hate speech detection (HSD) from text is an emerging research problem in natural language processing (NLP). Researchers developed various approaches to solve the automatic hate speech detection problem using different corpora in various languages, however, research on the Urdu language is rather scarce. This study aims to address the HSD task on Twitter using Roman Urdu text. The contribution of this research is the development of a hybrid model for Roman Urdu HSD, which has not been previously explored. The novel hybrid model integrates deep learning (DL) and transformer models for automatic feature extraction, combined with machine learning algorithms (MLAs) for classification. To further enhance model performance, we employ several hyperparameter optimization (HPO) techniques, including Grid Search (GS), Randomized Search (RS), and Bayesian Optimization with Gaussian Processes (BOGP). Evaluation is carried out on two publicly available benchmarks Roman Urdu corpora comprising HS-RU-20 corpus and RUHSOLD hate speech corpus. Results demonstrate that the Multilingual BERT (MBERT) feature learner, paired with a Support Vector Machine (SVM) classifier and optimized using RS, achieves state-of-the-art performance. On the HS-RU-20 corpus, this model attained an accuracy of 0.93 and an F1 score of 0.95 for the Neutral-Hostile classification task, and an accuracy of 0.89 with an F1 score of 0.88 for the Hate Speech-Offensive task. On the RUHSOLD corpus, the same model achieved an accuracy of 0.95 and an F1 score of 0.94 for the Coarse-grained task, alongside an accuracy of 0.87 and an F1 score of 0.84 for the Fine-grained task. These results demonstrate the effectiveness of our hybrid approach for Roman Urdu hate speech detection.
Waqar Ashiq mail , Samra Kanwal mail , Adnan Rafique mail , Muhammad Waqas mail , Tahir Khurshaid mail , Elizabeth Caro Montero mail elizabeth.caro@uneatlantico.es, Alicia Bustamante Alonso mail alicia.bustamante@uneatlantico.es, Imran Ashraf mail ,
Ashiq