Consultar por División

Subir un nivel
Exportar como [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Agrupar por: Fecha | Título | Autores | Tipo de Documento | Sin Agrupar
Número de registros en este nivel: 10.

Otro Materias > Alimentación Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto Inglés, Español, Italiano, Portugués Composición Nutricional es un espacio creado para proporcionar una serie de servicios de valor añadido, ofreciendo herramientas, recursos e informaciones sobre programas de formación e investigación para profesionales e interesados en el ámbito de la nutrición y salud. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2022) Composición Nutricional. Repositorio de la Universidad.

Otro Materias > Ciencias Sociales Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado Inglés, Español A partir de los datos introducidos y de diferentes escenarios, la herramienta del simulador digital genera distintos retos a los estudiantes-emprendedores para poner a prueba y evaluar la parte financiera de una propuesta de emprendimiento y también ofrece recomendaciones en función de la aportación real de diferentes agentes financieros como bancos, inversores privados, business angels o plataformas de financiación colaborativa. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2023) Digital Simulator for Entrepreneurial Finance (FINANCEn_LAB). Repositorio de la Universidad.

Otro Materias > Educación física y el deporte Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto Español El objetivo de esta investigación es estudiar cuál es el mecanismo de protección ante las consecuencias de la ganancia excesiva de peso en el embarazo en mujeres físicamente activas. Dados los resultados de las investigaciones realizadas acerca de la función endocrina y paracrina del músculo esquelético y la liberación de miokinas, una de las principales líneas de trabajo será estudiar la relación entre la presencia de miokinas y los beneficios obtenidos por el ejercicio físico. Se inicia el proyecto realizando una revisión del estado del arte en dos áreas en cuanto a ejercicio físico y liberación de miokinas y por otro lado, del tipo de ejercicio que más beneficios reporta en el proceso de gestación. Se lleva a cabo un ensayo clínico con el Hospital Universitario Marqués de Valdecilla para observar el efecto del ejercicio físico durante el embarazo en la liberación de miokinas y en la prevención de la ganancia excesiva de peso y sus consecuencias. Como resultado del proyecto se ha generado la página web www.embactiva.es que ha sido presentada en la primera reunión de la Red Temática Española de Ejercicio durante el Embarazo. Esta web está siendo reconocida como enlace de interés desde la Sociedad Española de Ginecología y Obstetricia (SEGO), El Hospital Universitario de Fuenlabrada, ANIS, Farmacosalud, Clínica Zuatzu, entre otros. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2017) Estudio de la influencia del ejercicio físico durante el embarazo en la prevención de las consecuencias de la ganancia excesiva de peso - EFEMBARAZO. Repositorio de la Universidad. (Inédito)

Otro Materias > Ciencias Sociales
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto Inglés La aplicación “Navigating Tourism in Crisis” está dirigida directamente a nuevos empresarios y con experiencia, interesados en prosperar en el difícil sector turístico, especialmente durante crisis turbulentas. Contiene enlaces a todos los recursos creados dentro de este proyecto, incluidos vídeos, podcasts, estudios de casos y cursos modulares, centrándose especialmente en la accesibilidad de los materiales de aprendizaje para aquellos que quieren evitar pasar largas horas delante de un ordenador. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2023) Navigating SMEs in the tourism sector through crisis (T-CRISIS-NAV). Repositorio de la Universidad.

Otro Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado Español Como resultado del proyecto “Nuevos mecanismos para conocer el riesgo de lesión en el deporte en diferentes tramos de la temporada deportiva” se ha generado una herramienta digital que permite llevar el control de las lesiones de cada deportista, así como sus constantes biomecánicas, hábitos de alimentación y estado de salud emocional de tal forma que, se cuenta con información que combina varios factores a un nivel de detalle importante y de modo personalizado para cada jugador. De este modo, se obtienen los inputs para generar el análisis estadístico que alerta sobre las probabilidades de sufrir determinada lesión. Objetivo del Proyecto: Desarrollar una herramienta que permita identificar el riesgo de lesión de un deportista, independientemente del nivel o categoría del mismo, y poder actuar en consecuencia de manera individualizada, según el período de la temporada en el que se encuentre. Financiación: Este proyecto ha sido cofinanciado por la Sociedad de Desarrollo Regional de Cantabria (SODERCAN) y el el Programa Operativo FEDER de Cantabria en el marco del programa denominado I+C= +C 2016 (Investigación + Conocimiento= +Cantabria) que tiene por objetivo el fortalecimiento del tejido industrial de la región. Inicio: 15/12/2016 Fin: 14/12/2018 Código Externo: ID16-IN-022 metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2016) Nuevos mecanismos para conocer el riesgo de lesión en el deporte en diferentes tramos de la temporada deportiva. R&P (Recovery and Performance). Repositorio de la Universidad. (Inédito)

Otro Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado Español El proyecto se centra en el desarrollo de tecnologías para la identificación de riesgos en espacios acuáticos naturales. A partir del conocimiento que se pretende generar, la entidad espera comercializar servicios de soporte para la gestión de riesgos, la acción preventiva y comunicación de emergencias. La propuesta se orienta a crear un sistema experto en la gestión de riesgos en espacios acuáticos naturales (playas), basado por un lado en una aplicación para la evaluación de riesgos, y por otro, en un sistema de registro y análisis de sucesos y accidentes. Esta herramienta debe permitir a los responsables de la gestión de la seguridad en zonas de baño una gestión adecuada y eficaz de los recursos preventivos para minimizar la probabilidad y severidad de riesgos que puedan afectar a la integridad física o a la salud de las personas, y en consecuencia, el aumento de la seguridad acuática en las costas. Objetivo del Proyecto: Desarrollar tecnologías para la identificación de riesgos en espacios acuáticos naturales con el objeto de prevenir ahogamientos y otros incidentes en zonas de playa. Financiación: Este proyecto ha sido cofinanciado por la Sociedad de Desarrollo Regional de Cantabria (SODERCAN) y el el Programa Operativo FEDER de Cantabria en el marco del programa denominado I+C= +C 2016 (Investigación + Conocimiento= +Cantabria) que tiene por objetivo el fortalecimiento del tejido industrial de la región. Inicio: 09/12/2016 Fin: 08/12/2018 Código Externo: ID16-IN-038 metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2016) PREVENT-SOS: Desarrollo de tecnologías para la identificación de riesgos en espacios acuáticos naturales. Repositorio de la Universidad. (Inédito)

Otro Materias > Ingeniería
Materias > Educación
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado Español A pesar del gran incremento de la práctica deportiva en la sociedad occidental en los últimos años, aún hay, según fuentes de la UE, aproximadamente un 50% de la población europea que no hace ejercicio regularmente, lo que está generando un grave problema de salud, especialmente preocupante en la población infantil y juvenil. Del 50% de la población que hace deporte de forma regular, un porcentaje muy alto lo hace solo, en casa o en lugares abiertos públicos sin ninguna supervisión o control por parte de personal especializado, lo que conlleva un cierto riesgo de sufrir lesiones y/o patologías de diferente pronósticos. Ante esta situación compleja de tener la necesidad de promover la actividad física pero intentando aminorar el riesgo de la propia práctica, se propone el desarrollo de una aplicación móvil “freemium” que fomente el ejercicio y que integre una serie de tecnologías innovadoras para incorporar inteligencia artificial que aplicará sobre unos elementos de alerta que puedan generar avisos y geolocalizar al practicante de una forma rápida y eficaz. Entendemos que el desarrollo de este tipo de negocios de carácter tecnológico y de alto grado de responsabilidad social hacia la ciudadanía incrementará el tejido empresarial de Cantabria y generará nuevos puestos de trabajo estables y de alto nivel de formación. Las sinergias que se proponen con instituciones universitarias y de investigación fomentarán los ecosistemas profesionales relacionados con las nuevas tecnologías de la información, la salud y la seguridad. El objetivo de este sistema complejo que se propone es promover la actividad física segura de forma global. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2016) SMART ACTIVE LIFE: Desarrollo de tecnologías inteligentes para la promoción de la vida activa y segura. Repositorio de la Universidad. (Inédito)

Otro Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado Español El ahogamiento es una de las principales causas de muerte en el mundo, alrededor de 372.000 personas al año, siendo una cifra que se considera subestimada (OMS, 2014). En consecuencia, existe la necesidad de mejorar esta situación considerada de salud pública. El objetivo del proyecto SOSeas es el desarrollo de una herramienta de evaluación para predecir el riesgo dinámico de los ahogamientos en las playas. En los espacios acuáticos recreativos se espera que una herramienta informática pueda mejorar la gestión de la seguridad por parte de los socorristas y también la información de riesgo de ahogamiento para los bañistas. Este proyecto es una continuidad del trabajo realizado en PreventSOS. En aquel caso el foco era el desarrollo de un sistema experto para la identificación, análisis y gestión del riesgo en espacios acuáticos y el diseño de una aplicación web para el registro de incidentes y accidentes. SOSeas pretende mejorar el servicio anterior integrando el sistema de información que provee el Copernicus Marine Environment Monitoring Service (CMEMS) en todo el mundo. Se pretende conseguir suficientes datos para poder nutrir a un sistema basado en técnicas de aprendizaje-máquina. La herramienta SOSeas se desarrolla para dos tipos de usuarios : gestores de playas/socorristas y usuarios recreativos (nadadores, navegantes, surfistas...). Estos usuarios podrán acceder a las condiciones meteorológicas y oceanográficas así como a información a medida sobre las amenazas de estos entornos siempre cambiantes. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2019) SOSeas: An assessment tool for predicting the dynamic risk of drowning on beaches. Repositorio de la Universidad. (Inédito)

Otro Materias > Alimentación Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto Inglés, Español, Portugués Se trata de una plataforma que integra cinco bots diferentes disponibles en cinco idiomas. El bot enseña al estudiante de nutrición y dietética a realizar un proceso de exploración clínica de forma online/interactiva. Estos bots proporcionan los siguientes casos: Gastroenterología, Diabetes mellitus tipo 1, enfermedades cardiovasculares y diabetes, obesidad y enfermedades renales. Cada bot dispone de un cuestionario relacionado con el ámbito de la nutrición, y una encuesta final para conocer la experiencia del usuario. Desarrollada en el marco del proyecto E+DIETing_LAB metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2025) Virtual Patient (E+DIETing_LAB). Repositorio de la Universidad.

Otro Materias > Alimentación Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto Inglés, Español, Portugués Una herramienta que ofrece una formación centrada en el Proceso de Atención Nutricional (PAN) y el servicio a la comunidad. Mediante videollamada las personas interesadas pueden recibir consejo dietético gratuito y unas recomendaciones de cómo mejorar su alimentación, bajo la supervisión de un profesor. Desarrollada en el marco del proyecto E+DIETing_LAB metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2025) Virtual nutritional clinic (E+DIETing_LAB). Repositorio de la Universidad.

<a class="ep_document_link" href="/17844/1/frai-1-1572645.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

A systematic review of deep learning methods for community detection in social networks

Introduction: The rapid expansion of generated data through social networks has introduced significant challenges, which underscores the need for advanced methods to analyze and interpret these complex systems. Deep learning has emerged as an effective approach, offering robust capabilities to process large datasets, and uncover intricate relationships and patterns. Methods: In this systematic literature review, we explore research conducted over the past decade, focusing on the use of deep learning techniques for community detection in social networks. A total of 19 studies were carefully selected from reputable databases, including the ACM Library, Springer Link, Scopus, Science Direct, and IEEE Xplore. This review investigates the employed methodologies, evaluates their effectiveness, and discusses the challenges identified in these works. Results: Our review shows that models like graph neural networks (GNNs), autoencoders, and convolutional neural networks (CNNs) are some of the most commonly used approaches for community detection. It also examines the variety of social networks, datasets, evaluation metrics, and employed frameworks in these studies. Discussion: However, the analysis highlights several challenges, such as scalability, understanding how the models work (interpretability), and the need for solutions that can adapt to different types of networks. These issues stand out as important areas that need further attention and deeper research. This review provides meaningful insights for researchers working in social network analysis. It offers a detailed summary of recent developments, showcases the most impactful deep learning methods, and identifies key challenges that remain to be explored.

Producción Científica

Mohamed El-Moussaoui mail , Mohamed Hanine mail , Ali Kartit mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Isabel de la Torre Díez mail ,

El-Moussaoui

<a class="ep_document_link" href="/17831/1/s43856-025-01020-4.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Association between blood cortisol levels and numerical rating scale in prehospital pain assessment

Background Nowadays, there is no correlation between levels of cortisol and pain in the prehospital setting. The aim of this work was to determine the ability of prehospital cortisol levels to correlate to pain. Cortisol levels were compared with those of the numerical rating scale (NRS). Methods This is a prospective observational study looking at adult patients with acute disease managed by Emergency Medical Services (EMS) and transferred to the emergency department of two tertiary care hospitals. Epidemiological variables, vital signs, and prehospital blood analysis data were collected. A total of 1516 patients were included, the median age was 67 years (IQR: 51–79; range: 18–103) with 42.7% of females. The primary outcome was pain evaluation by NRS, which was categorized as pain-free (0 points), mild (1–3), moderate (4–6), or severe (≥7). Analysis of variance, correlation, and classification capacity in the form area under the curve of the receiver operating characteristic (AUC) curve were used to prospectively evaluate the association of cortisol with NRS. Results The median NRS and cortisol level are 1 point (IQR: 0–4) and 282 nmol/L (IQR: 143–433). There are 584 pain-free patients (38.5%), 525 mild (34.6%), 244 moderate (16.1%), and 163 severe pain (10.8%). Cortisol levels in each NRS category result in p < 0.001. The correlation coefficient between the cortisol level and NRS is 0.87 (p < 0.001). The AUC of cortisol to classify patients into each NRS category is 0.882 (95% CI: 0.853–0.910), 0.496 (95% CI: 0.446–0.545), 0.837 (95% CI: 0.803–0.872), and 0.981 (95% CI: 0.970–0.991) for the pain-free, mild, moderate, and severe categories, respectively. Conclusions Cortisol levels show similar pain evaluation as NRS, with high-correlation for NRS pain categories, except for mild-pain. Therefore, cortisol evaluation via the EMS could provide information regarding pain status.

Producción Científica

Raúl López-Izquierdo mail , Elisa A. Ingelmo-Astorga mail , Carlos del Pozo Vegas mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Ancor Sanz-García mail , Francisco Martín-Rodríguez mail ,

López-Izquierdo

<a class="ep_document_link" href="/17838/1/s41598-025-02008-9.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Botnet detection in internet of things using stacked ensemble learning model

Botnets are used for malicious activities such as cyber-attacks, spamming, and data theft and have become a significant threat to cyber security. Despite existing approaches for cyber attack detection, botnets prove to be a particularly difficult problem that calls for more advanced detection methods. In this research, a stacking classifier is proposed based on K-nearest neighbor, support vector machine, decision tree, random forest, and multilayer perceptron, called KSDRM, for botnet detection. Logistic regression acts as the meta-learner to combine the predictions from the base classifiers into the final prediction with the aim of increasing the overall accuracy and predictive performance of the ensemble. The UNSW-NB15 dataset is used to train machine learning models and evaluate their effectiveness in detecting cyber-attacks on IoT networks. The categorical features are transformed into numerical values using label encoding. Machine learning techniques are adopted to recognize botnet attacks to enhance cyber security measures. The KSDRM model successfully captures the complex patterns and traits of botnet attacks and obtains 99.99% training accuracy. The KSDRM model also performs well during testing by achieving an accuracy of 97.94%. Based on 3, 5, 7, and 10 folds, the k-fold cross-validation results show that the proposed method’s average accuracy is 99.89%, 99.88%, 99.89%, and 99.87%, respectively. Further, the demonstration of experiments and results shows the KSDRM model is an effective method to identify botnet-based cyber attacks. The findings of this study have the potential to improve cyber security controls and strengthen networks against changing threats.

Producción Científica

Mudasir Ali mail , Muhammad Faheem Mushtaq mail , Urooj Akram mail , Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Hanen Karamti mail , Imran Ashraf mail ,

Ali

<a class="ep_document_link" href="/17839/1/s41598-025-05028-7.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Enhanced schizophrenia detection using multichannel EEG and CAOA-RST-based feature selection

Schizophrenia is a mental disorder characterized by hallucinations, delusions, disorganized thinking and behavior, and inappropriate affect. Early and accurate diagnosis of schizophrenia remains a challenge due to the disorder’s complex nature and the limitations of state-of-the-art techniques. It is evident from the literature that electroencephalogram (EEG) signals provide valuable insights into brain activity, but their high dimensionality and complexity pose remain key challenges. Thus, our research introduces a novel approach by integrating the multichannel EGG, Crossover-Boosted Archimedes Optimization Algorithm (CAOA), and Rough Set Theory (RST) for schizophrenia detection. It is a four-stage model. In the first stage, Raw EGG data is collected. The data is passed to the next stage, which is called data preprocessing. This is used for artifact removal, band-pass filtering, and data normalization. The preprocessed data passed to the next stage. In the feature extraction stage, feature selection is performed using CAOA. In addition, classification is performed using a Support Vector Machine (SVM) based on features extracted through Multivariate Empirical Mode Function (MEMF) and entropy measures. The data interpretation stage displays the results to the end user using the data interpretation stage. We experimented and tested our proposed model using real EEG datasets. The simulation results prove that the proposed model achieved an average accuracy of 94.9%, sensitivity of 93.9%, specificity of 96.4%, and precision of 92.7%. Thus, our proposed model demonstrates significant improvements over state-of-the-art methods. In addition, the integration of CAOA and RST effectively addresses the challenges of high-dimensional EEG data, helps optimize the feature selection process, and increases accuracy. In future work, we suggest incorporating large-size datasets that include more diverse patient groups and refining the model with advanced machine-learning models and techniques.

Artículos y libros

Mohammad Abrar mail , Abdu Salam mail , Ahmed Albugmi mail , Fahad Al-otaibi mail , Farhan Amin mail , Isabel de la Torre mail , Thania Chio Montero mail , Perla Aracely Arroyo Gala mail ,

Abrar

<a class="ep_document_link" href="/17827/1/fspor-1-1614186.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Methodology and content for the design of basketball coach education programs: a systematic review

Background: The increasing complexity of basketball and the need for optimal decision-making in order to maximize competitive performance highlight the necessity of specialized training for basketball coaches. This systematic review aims to compile, synthesize, and integrate international research published in specialized journals on the training of basketball coaches and students, examining their characteristics and needs. Specifically, it analyzes the content, technical-tactical actions, and methodologies used in practice and education programs to determine which essential parameters for their technical and tactical development. Methods: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA®) guidelines and the PICOS® model until January 30, 2025, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus, and Scopus databases. The risk of bias was assessed and the PEDro scale was used to analyze methodological quality. Results: A total of 14,090 articles were obtained in the initial search. After inclusion and exclusion criteria, the final sample was 23 articles. These studies maintained a high standard of quality. This revealed data on the technical-tactical actions addressed in different categories; the profiles, characteristics, and influence of coaches on player development; and the approaches, teaching methods, and evaluation methodologies used in acquiring knowledge and competencies for the professional development of basketball coaches. Conclusions: Adequate theoretical and practical training for basketball coaches is essential for player development. Therefore, training programs for basketball coaches must integrate technical-tactical, physical, and psychological knowledge with the acquisition of skills and competencies that are refined through practice. This training should be continuous, more specialized, and comprehensive, focusing on understanding and constructing knowledge that supports the professional growth of basketballers. Additionally, training should incorporate digital tools and informal learning opportunities, with blended learning emerging as the most effective methodology for this purpose.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Julio Calleja-González mail , Jeisson Mosquera-Maturana mail , Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es,

Alemany Iturriaga