Consultar por División

Subir un nivel
Exportar como [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Agrupar por: Fecha | Título | Autores | Tipo de Documento | Sin Agrupar
Ir a: 2025 | 2023 | 2022 | 2019 | 2017 | 2016
Número de registros en este nivel: 10.

2025

Otro Materias > Alimentación Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto Inglés, Español, Portugués Se trata de una plataforma que integra cinco bots diferentes disponibles en cinco idiomas. El bot enseña al estudiante de nutrición y dietética a realizar un proceso de exploración clínica de forma online/interactiva. Estos bots proporcionan los siguientes casos: Gastroenterología, Diabetes mellitus tipo 1, enfermedades cardiovasculares y diabetes, obesidad y enfermedades renales. Cada bot dispone de un cuestionario relacionado con el ámbito de la nutrición, y una encuesta final para conocer la experiencia del usuario. Desarrollada en el marco del proyecto E+DIETing_LAB metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2025) Virtual Patient (E+DIETing_LAB). Repositorio de la Universidad.

Otro Materias > Alimentación Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto Inglés, Español, Portugués Una herramienta que ofrece una formación centrada en el Proceso de Atención Nutricional (PAN) y el servicio a la comunidad. Mediante videollamada las personas interesadas pueden recibir consejo dietético gratuito y unas recomendaciones de cómo mejorar su alimentación, bajo la supervisión de un profesor. Desarrollada en el marco del proyecto E+DIETing_LAB metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2025) Virtual nutritional clinic (E+DIETing_LAB). Repositorio de la Universidad.

2023

Otro Materias > Ciencias Sociales Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado Inglés, Español A partir de los datos introducidos y de diferentes escenarios, la herramienta del simulador digital genera distintos retos a los estudiantes-emprendedores para poner a prueba y evaluar la parte financiera de una propuesta de emprendimiento y también ofrece recomendaciones en función de la aportación real de diferentes agentes financieros como bancos, inversores privados, business angels o plataformas de financiación colaborativa. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2023) Digital Simulator for Entrepreneurial Finance (FINANCEn_LAB). Repositorio de la Universidad.

Otro Materias > Ciencias Sociales
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto Inglés La aplicación “Navigating Tourism in Crisis” está dirigida directamente a nuevos empresarios y con experiencia, interesados en prosperar en el difícil sector turístico, especialmente durante crisis turbulentas. Contiene enlaces a todos los recursos creados dentro de este proyecto, incluidos vídeos, podcasts, estudios de casos y cursos modulares, centrándose especialmente en la accesibilidad de los materiales de aprendizaje para aquellos que quieren evitar pasar largas horas delante de un ordenador. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2023) Navigating SMEs in the tourism sector through crisis (T-CRISIS-NAV). Repositorio de la Universidad.

2022

Otro Materias > Alimentación Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto Inglés, Español, Italiano, Portugués Composición Nutricional es un espacio creado para proporcionar una serie de servicios de valor añadido, ofreciendo herramientas, recursos e informaciones sobre programas de formación e investigación para profesionales e interesados en el ámbito de la nutrición y salud. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2022) Composición Nutricional. Repositorio de la Universidad.

2019

Otro Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado Español El ahogamiento es una de las principales causas de muerte en el mundo, alrededor de 372.000 personas al año, siendo una cifra que se considera subestimada (OMS, 2014). En consecuencia, existe la necesidad de mejorar esta situación considerada de salud pública. El objetivo del proyecto SOSeas es el desarrollo de una herramienta de evaluación para predecir el riesgo dinámico de los ahogamientos en las playas. En los espacios acuáticos recreativos se espera que una herramienta informática pueda mejorar la gestión de la seguridad por parte de los socorristas y también la información de riesgo de ahogamiento para los bañistas. Este proyecto es una continuidad del trabajo realizado en PreventSOS. En aquel caso el foco era el desarrollo de un sistema experto para la identificación, análisis y gestión del riesgo en espacios acuáticos y el diseño de una aplicación web para el registro de incidentes y accidentes. SOSeas pretende mejorar el servicio anterior integrando el sistema de información que provee el Copernicus Marine Environment Monitoring Service (CMEMS) en todo el mundo. Se pretende conseguir suficientes datos para poder nutrir a un sistema basado en técnicas de aprendizaje-máquina. La herramienta SOSeas se desarrolla para dos tipos de usuarios : gestores de playas/socorristas y usuarios recreativos (nadadores, navegantes, surfistas...). Estos usuarios podrán acceder a las condiciones meteorológicas y oceanográficas así como a información a medida sobre las amenazas de estos entornos siempre cambiantes. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2019) SOSeas: An assessment tool for predicting the dynamic risk of drowning on beaches. Repositorio de la Universidad. (Inédito)

2017

Otro Materias > Educación física y el deporte Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto Español El objetivo de esta investigación es estudiar cuál es el mecanismo de protección ante las consecuencias de la ganancia excesiva de peso en el embarazo en mujeres físicamente activas. Dados los resultados de las investigaciones realizadas acerca de la función endocrina y paracrina del músculo esquelético y la liberación de miokinas, una de las principales líneas de trabajo será estudiar la relación entre la presencia de miokinas y los beneficios obtenidos por el ejercicio físico. Se inicia el proyecto realizando una revisión del estado del arte en dos áreas en cuanto a ejercicio físico y liberación de miokinas y por otro lado, del tipo de ejercicio que más beneficios reporta en el proceso de gestación. Se lleva a cabo un ensayo clínico con el Hospital Universitario Marqués de Valdecilla para observar el efecto del ejercicio físico durante el embarazo en la liberación de miokinas y en la prevención de la ganancia excesiva de peso y sus consecuencias. Como resultado del proyecto se ha generado la página web www.embactiva.es que ha sido presentada en la primera reunión de la Red Temática Española de Ejercicio durante el Embarazo. Esta web está siendo reconocida como enlace de interés desde la Sociedad Española de Ginecología y Obstetricia (SEGO), El Hospital Universitario de Fuenlabrada, ANIS, Farmacosalud, Clínica Zuatzu, entre otros. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2017) Estudio de la influencia del ejercicio físico durante el embarazo en la prevención de las consecuencias de la ganancia excesiva de peso - EFEMBARAZO. Repositorio de la Universidad. (Inédito)

2016

Otro Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado Español Como resultado del proyecto “Nuevos mecanismos para conocer el riesgo de lesión en el deporte en diferentes tramos de la temporada deportiva” se ha generado una herramienta digital que permite llevar el control de las lesiones de cada deportista, así como sus constantes biomecánicas, hábitos de alimentación y estado de salud emocional de tal forma que, se cuenta con información que combina varios factores a un nivel de detalle importante y de modo personalizado para cada jugador. De este modo, se obtienen los inputs para generar el análisis estadístico que alerta sobre las probabilidades de sufrir determinada lesión. Objetivo del Proyecto: Desarrollar una herramienta que permita identificar el riesgo de lesión de un deportista, independientemente del nivel o categoría del mismo, y poder actuar en consecuencia de manera individualizada, según el período de la temporada en el que se encuentre. Financiación: Este proyecto ha sido cofinanciado por la Sociedad de Desarrollo Regional de Cantabria (SODERCAN) y el el Programa Operativo FEDER de Cantabria en el marco del programa denominado I+C= +C 2016 (Investigación + Conocimiento= +Cantabria) que tiene por objetivo el fortalecimiento del tejido industrial de la región. Inicio: 15/12/2016 Fin: 14/12/2018 Código Externo: ID16-IN-022 metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2016) Nuevos mecanismos para conocer el riesgo de lesión en el deporte en diferentes tramos de la temporada deportiva. R&P (Recovery and Performance). Repositorio de la Universidad. (Inédito)

Otro Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado Español El proyecto se centra en el desarrollo de tecnologías para la identificación de riesgos en espacios acuáticos naturales. A partir del conocimiento que se pretende generar, la entidad espera comercializar servicios de soporte para la gestión de riesgos, la acción preventiva y comunicación de emergencias. La propuesta se orienta a crear un sistema experto en la gestión de riesgos en espacios acuáticos naturales (playas), basado por un lado en una aplicación para la evaluación de riesgos, y por otro, en un sistema de registro y análisis de sucesos y accidentes. Esta herramienta debe permitir a los responsables de la gestión de la seguridad en zonas de baño una gestión adecuada y eficaz de los recursos preventivos para minimizar la probabilidad y severidad de riesgos que puedan afectar a la integridad física o a la salud de las personas, y en consecuencia, el aumento de la seguridad acuática en las costas. Objetivo del Proyecto: Desarrollar tecnologías para la identificación de riesgos en espacios acuáticos naturales con el objeto de prevenir ahogamientos y otros incidentes en zonas de playa. Financiación: Este proyecto ha sido cofinanciado por la Sociedad de Desarrollo Regional de Cantabria (SODERCAN) y el el Programa Operativo FEDER de Cantabria en el marco del programa denominado I+C= +C 2016 (Investigación + Conocimiento= +Cantabria) que tiene por objetivo el fortalecimiento del tejido industrial de la región. Inicio: 09/12/2016 Fin: 08/12/2018 Código Externo: ID16-IN-038 metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2016) PREVENT-SOS: Desarrollo de tecnologías para la identificación de riesgos en espacios acuáticos naturales. Repositorio de la Universidad. (Inédito)

Otro Materias > Ingeniería
Materias > Educación
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado Español A pesar del gran incremento de la práctica deportiva en la sociedad occidental en los últimos años, aún hay, según fuentes de la UE, aproximadamente un 50% de la población europea que no hace ejercicio regularmente, lo que está generando un grave problema de salud, especialmente preocupante en la población infantil y juvenil. Del 50% de la población que hace deporte de forma regular, un porcentaje muy alto lo hace solo, en casa o en lugares abiertos públicos sin ninguna supervisión o control por parte de personal especializado, lo que conlleva un cierto riesgo de sufrir lesiones y/o patologías de diferente pronósticos. Ante esta situación compleja de tener la necesidad de promover la actividad física pero intentando aminorar el riesgo de la propia práctica, se propone el desarrollo de una aplicación móvil “freemium” que fomente el ejercicio y que integre una serie de tecnologías innovadoras para incorporar inteligencia artificial que aplicará sobre unos elementos de alerta que puedan generar avisos y geolocalizar al practicante de una forma rápida y eficaz. Entendemos que el desarrollo de este tipo de negocios de carácter tecnológico y de alto grado de responsabilidad social hacia la ciudadanía incrementará el tejido empresarial de Cantabria y generará nuevos puestos de trabajo estables y de alto nivel de formación. Las sinergias que se proponen con instituciones universitarias y de investigación fomentarán los ecosistemas profesionales relacionados con las nuevas tecnologías de la información, la salud y la seguridad. El objetivo de este sistema complejo que se propone es promover la actividad física segura de forma global. metadata SIN ESPECIFICAR mail SIN ESPECIFICAR (2016) SMART ACTIVE LIFE: Desarrollo de tecnologías inteligentes para la promoción de la vida activa y segura. Repositorio de la Universidad. (Inédito)

<a href="/17061/1/fspor-1-1565900.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Tensiomyography, functional movement screen and counter movement jump for the assessment of injury risk in sport: a systematic review of original studies of diagnostic tests

Background: Scientific research should be carried out to prevent sports injuries. For this purpose, new assessment technologies must be used to analyze and identify the risk factors for injury. The main objective of this systematic review was to compile, synthesize and integrate international research published in different scientific databases on Countermovement Jump (CMJ), Functional Movement Screen (FMS) and Tensiomyography (TMG) tests and technologies for the assessment of injury risk in sport. This way, this review determines the current state of the knowledge about this topic and allows a better understanding of the existing problems, making easier the development of future lines of research. Methodology: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and the PICOS model until November 30, 2024, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus and Scopus databases. The risk of bias was assessed and the PEDro scale was used to analyze methodological quality. Results: A total of 510 articles were obtained in the initial search. After inclusion and exclusion criteria, the final sample was 40 articles. These studies maintained a high standard of quality. This revealed the effects of the CMJ, FMS and TMG methods for sports injury assessment, indicating the sample population, sport modality, assessment methods, type of research design, study variables, main findings and intervention effects. Conclusions: The CMJ vertical jump allows us to evaluate the power capacity of the lower extremities, both unilaterally and bilaterally, detect neuromuscular asymmetries and evaluate fatigue. Likewise, FMS could be used to assess an athlete's basic movement patterns, mobility and postural stability. Finally, TMG is a non-invasive method to assess the contractile properties of superficial muscles, monitor the effects of training, detect muscle asymmetries, symmetries, provide information on muscle tone and evaluate fatigue. Therefore, they should be considered as assessment tests and technologies to individualize training programs and identify injury risk factors.

Producción Científica

Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Antonio Bores-Cerezal mail antonio.bores@uneatlantico.es, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Julio Calleja-González mail ,

Velarde-Sotres

<a class="ep_document_link" href="/17139/1/s41598-025-89266-9.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Harnessing AI forward and backward chaining with telemetry data for enhanced diagnostics and prognostics of smart devices

In the rapidly evolving landscape of artificial intelligence (AI) and the Internet of Things (IoT), the significance of device diagnostics and prognostics is paramount for guaranteeing the dependable operation and upkeep of intricate systems. The capacity to precisely diagnose and preemptively predict potential failures holds the potential to considerably amplify maintenance efficiency, diminish downtime, and optimize resource allocation. The wealth of information offered by telemetry data gathered from IoT devices presents an opportunity for diagnostics and prognostics applications. However, extracting valuable insights and making well-timed decisions from this extensive data reservoir remains a formidable challenge. This study proposes a novel AI-driven framework that integrates forward chaining and backward chaining algorithms to analyze telemetry data from IoT devices. The proposed methodology utilizes rule-based inference to detect real-time anomalies and predict potential future failures, providing a dual-layered approach for diagnostics and prognostics. The results show that the diagnostics engine using forward chaining detects real-time issues like “High Temperature” and “Low Pressure,” while the prognostics engine with backward chaining predicts potential future occurrences of these issues, enabling proactive prevention measures. The experimental results demonstrate that adopting this approach could offer valuable assistance to authorities and stakeholders. Accurate early diagnosis and prediction of potential failures have the capability to greatly improve maintenance efficiency, minimize downtime, and optimize cost.

Producción Científica

Muhammad Shoaib Farooq mail , Rizwan Pervez Mir mail , Atif Alvi mail , Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Eduardo García Villena mail eduardo.garcia@uneatlantico.es, Fadwa Alrowais mail , Hanen Karamti mail , Imran Ashraf mail ,

Farooq

<a class="ep_document_link" href="/17392/1/journal.pone.0317863.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Deep image features sensing with multilevel fusion for complex convolution neural networks & cross domain benchmarks

Efficient image retrieval from a variety of datasets is crucial in today's digital world. Visual properties are represented using primitive image signatures in Content Based Image Retrieval (CBIR). Feature vectors are employed to classify images into predefined categories. This research presents a unique feature identification technique based on suppression to locate interest points by computing productive sum of pixel derivatives by computing the differentials for corner scores. Scale space interpolation is applied to define interest points by combining color features from spatially ordered L2 normalized coefficients with shape and object information. Object based feature vectors are formed using high variance coefficients to reduce the complexity and are converted into bag-of-visual-words (BoVW) for effective retrieval and ranking. The presented method encompass feature vectors for information synthesis and improves the discriminating strength of the retrieval system by extracting deep image features including primitive, spatial, and overlayed using multilayer fusion of Convolutional Neural Networks(CNNs). Extensive experimentation is performed on standard image datasets benchmarks, including ALOT, Cifar-10, Corel-10k, Tropical Fruits, and Zubud. These datasets cover wide range of categories including shape, color, texture, spatial, and complicated objects. Experimental results demonstrate considerable improvements in precision and recall rates, average retrieval precision and recall, and mean average precision and recall rates across various image semantic groups within versatile datasets. The integration of traditional feature extraction methods fusion with multilevel CNN advances image sensing and retrieval systems, promising more accurate and efficient image retrieval solutions.

Producción Científica

Jyotismita Chaki mail , Aiza Shabir mail , Khawaja Tehseen Ahmed mail , Arif Mahmood mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,

Chaki

<a class="ep_document_link" href="/16577/1/nutrients-17-00521-v2.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Nut Consumption Is Associated with Cognitive Status in Southern Italian Adults

Background: Nut consumption has been considered a potential protective factor against cognitive decline. The aim of this study was to test whether higher total and specific nut intake was associated with better cognitive status in a sample of older Italian adults. Methods: A cross-sectional analysis on 883 older adults (>50 y) was conducted. A 110-item food frequency questionnaire was used to collect information on the consumption of various types of nuts. The Short Portable Mental Status Questionnaire was used to assess cognitive status. Multivariate logistic regression analyses were performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between nut intake and cognitive status after adjusting for potential confounding factors. Results: The median intake of total nuts was 11.7 g/day and served as a cut-off to categorize low and high consumers (mean intake 4.3 g/day vs. 39.7 g/day, respectively). Higher total nut intake was significantly associated with a lower prevalence of impaired cognitive status among older individuals (OR = 0.35, CI 95%: 0.15, 0.84) after adjusting for potential confounding factors. Notably, this association remained significant after additional adjustment for adherence to the Mediterranean dietary pattern as an indicator of diet quality, (OR = 0.32, CI 95%: 0.13, 0.77). No significant associations were found between cognitive status and specific types of nuts. Conclusions: Habitual nut intake is associated with better cognitive status in older adults.

Producción Científica

Justyna Godos mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Evelyn Frias-Toral mail , Raynier Zambrano-Villacres mail , Angel Olider Rojas Vistorte mail angel.rojas@uneatlantico.es, Vanessa Yélamos Torres mail vanessa.yelamos@funiber.org, Maurizio Battino mail maurizio.battino@uneatlantico.es, Fabio Galvano mail , Sabrina Castellano mail , Giuseppe Grosso mail ,

Godos

<a class="ep_document_link" href="/16760/1/peerj-cs-2652.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Novel transfer learning approach for hand drawn mathematical geometric shapes classification

Hand-drawn mathematical geometric shapes are geometric figures, such as circles, triangles, squares, and polygons, sketched manually using pen and paper or digital tools. These shapes are fundamental in mathematics education and geometric problem-solving, serving as intuitive visual aids for understanding complex concepts and theories. Recognizing hand-drawn shapes accurately enables more efficient digitization of handwritten notes, enhances educational tools, and improves user interaction with mathematical software. This research proposes an innovative machine learning algorithm for the automatic classification of mathematical geometric shapes to identify and interpret these shapes from handwritten input, facilitating seamless integration with digital systems. We utilized a benchmark dataset of mathematical shapes based on a total of 20,000 images with eight classes circle, kite, parallelogram, square, rectangle, rhombus, trapezoid, and triangle. We introduced a novel machine-learning algorithm CnN-RFc that uses convolution neural networks (CNN) for spatial feature extraction and the random forest classifier for probabilistic feature extraction from image data. Experimental results illustrate that using the CnN-RFc method, the Light Gradient Boosting Machine (LGBM) algorithm surpasses state-of-the-art approaches with high accuracy scores of 98% for hand-drawn shape classification. Applications of the proposed mathematical geometric shape classification algorithm span various domains, including education, where it enhances interactive learning platforms and provides instant feedback to students.

Producción Científica

Aneeza Alam mail , Ali Raza mail , Nisrean Thalji mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Imran Ashraf mail ,

Alam