Socio-economic status, food security and adherence to the Mediterranean diet in five Mediterranean countries: the DELICIOUS project

Artículo Materias > Alimentación Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Artículos y libros
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Cerrado Inglés Food security is a universal need worldwide. This study explored the relationship between food security and adherence to the Mediterranean diet in the context of the DELICIOUS project. A survey involving 2,011 parents of children and adolescents aged 6–17 years was conducted. Adherence to the Mediterranean diet was assessed through the KIDMED score. Information regarding the ease of accessing Mediterranean foods, economic allowance, employment and residence was collected. Logistic regressions analyses were performed to test the associations. Individuals living in rural areas and reporting difficulty in obtaining all studied foods were less likely to follow the Mediterranean diet. Higher adherence was associated with a household monthly income higher than €4000. No associations with family status and no differences across countries were found. The progressive shift away from the Mediterranean diet may depend not only on cultural preferences for unhealthier, industrial alternatives but also on family budgets and food accessibility. metadata Scazzina, Francesca; Rosi, Alice; Giampieri, Francesca; Poveda-Loor, Carlos; Abdelkarim, Osama; Aly, Mohamed; Frias-Toral, Evelyn; Pons, Juancho; Vázquez-Araújo, Laura; Sumalla Cano, Sandra; Elío Pascual, Iñaki; Monasta, Lorenzo; Paladino, Nadia; Mata, Ana; Chacón, Adrián; Busó, Pablo y Grosso, Giuseppe mail SIN ESPECIFICAR, SIN ESPECIFICAR, francesca.giampieri@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, sandra.sumalla@uneatlantico.es, inaki.elio@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR (2025) Socio-economic status, food security and adherence to the Mediterranean diet in five Mediterranean countries: the DELICIOUS project. International Journal of Food Sciences and Nutrition, 76 (8). pp. 869-877. ISSN 0963-7486

Texto completo no disponible.

Resumen

Food security is a universal need worldwide. This study explored the relationship between food security and adherence to the Mediterranean diet in the context of the DELICIOUS project. A survey involving 2,011 parents of children and adolescents aged 6–17 years was conducted. Adherence to the Mediterranean diet was assessed through the KIDMED score. Information regarding the ease of accessing Mediterranean foods, economic allowance, employment and residence was collected. Logistic regressions analyses were performed to test the associations. Individuals living in rural areas and reporting difficulty in obtaining all studied foods were less likely to follow the Mediterranean diet. Higher adherence was associated with a household monthly income higher than €4000. No associations with family status and no differences across countries were found. The progressive shift away from the Mediterranean diet may depend not only on cultural preferences for unhealthier, industrial alternatives but also on family budgets and food accessibility.

Tipo de Documento: Artículo
Palabras Clave: Mediterranean diet; food security; children; adolescents; food availability; household income
Clasificación temática: Materias > Alimentación
Divisiones: Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Artículos y libros
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Depositado: 12 Dic 2025 13:08
Ultima Modificación: 12 Dic 2025 13:08
URI: https://repositorio.unib.org/id/eprint/17887

Acciones (logins necesarios)

Ver Objeto Ver Objeto

en

close

Socio-economic status, food security and adherence to the Mediterranean diet in five Mediterranean countries: the DELICIOUS project

Food security is a universal need worldwide. This study explored the relationship between food security and adherence to the Mediterranean diet in the context of the DELICIOUS project. A survey involving 2,011 parents of children and adolescents aged 6–17 years was conducted. Adherence to the Mediterranean diet was assessed through the KIDMED score. Information regarding the ease of accessing Mediterranean foods, economic allowance, employment and residence was collected. Logistic regressions analyses were performed to test the associations. Individuals living in rural areas and reporting difficulty in obtaining all studied foods were less likely to follow the Mediterranean diet. Higher adherence was associated with a household monthly income higher than €4000. No associations with family status and no differences across countries were found. The progressive shift away from the Mediterranean diet may depend not only on cultural preferences for unhealthier, industrial alternatives but also on family budgets and food accessibility.

Producción Científica

Francesca Scazzina mail , Alice Rosi mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Carlos Poveda-Loor mail , Osama Abdelkarim mail , Mohamed Aly mail , Evelyn Frias-Toral mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Lorenzo Monasta mail , Nadia Paladino mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,

Scazzina

<a href="/17858/1/s41598-025-18979-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Detection and classification of brain tumor using a hybrid learning model in CT scan images

Accurate diagnosis of brain tumors is critical in understanding the prognosis in terms of the type, growth rate, location, removal strategy, and overall well-being of the patients. Among different modalities used for the detection and classification of brain tumors, a computed tomography (CT) scan is often performed as an early-stage procedure for minor symptoms like headaches. Automated procedures based on artificial intelligence (AI) and machine learning (ML) methods are used to detect and classify brain tumors in Computed Tomography (CT) scan images. However, the key challenges in achieving the desired outcome are associated with the model’s complexity and generalization. To address these issues, we propose a hybrid model that extracts features from CT images using classical machine learning. Additionally, although MRI is a common modality for brain tumor diagnosis, its high cost and longer acquisition time make CT scans a more practical choice for early-stage screening and widespread clinical use. The proposed framework has different stages, including image acquisition, pre-processing, feature extraction, feature selection, and classification. The hybrid architecture combines features from ResNet50, AlexNet, LBP, HOG, and median intensity, classified using a multilayer perceptron. The selection of the relevant features in our proposed hybrid model was extracted using the SelectKBest algorithm. Thus, it optimizes the proposed model performance. In addition, the proposed model incorporates data augmentation to handle the imbalanced datasets. We employed a scoring function to extract the features. The Classification is ensured using a multilayer perceptron neural network (MLP). Unlike most existing hybrid approaches, which primarily target MRI-based brain tumor classification, our method is specifically designed for CT scan images, addressing their unique noise patterns and lower soft-tissue contrast. To the best of our knowledge, this is the first work to integrate LBP, HOG, median intensity, and deep features from both ResNet50 and AlexNet in a structured fusion pipeline for CT brain tumor classification. The proposed hybrid model is tested on data from numerous sources and achieved an accuracy of 94.82%, precision of 94.52%, specificity of 98.35%, and sensitivity of 94.76% compared to state-of-the-art models. While MRI-based models often report higher accuracies, the proposed model achieves 94.82% on CT scans, within 3–4% of leading MRI-based approaches, demonstrating strong generalization despite the modality difference. The proposed hybrid model, combining hand-crafted and deep learning features, effectively improves brain tumor detection and classification accuracy in CT scans. It has the potential for clinical application, aiding in early and accurate diagnosis. Unlike MRI, which is often time-intensive and costly, CT scans are more accessible and faster to acquire, making them suitable for early-stage screening and emergency diagnostics. This reinforces the practical and clinical value of the proposed model in real-world healthcare settings.

Producción Científica

Roja Ghasemi mail , Naveed Islam mail , Samin Bayat mail , Muhammad Shabir mail , Shahid Rahman mail , Farhan Amin mail , Isabel de la Torre mail , Ángel Gabriel Kuc Castilla mail angel.kuc@uneatlantico.es, Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx,

Ghasemi

<a class="ep_document_link" href="/17862/1/sensors-25-06419.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Edge-Based Autonomous Fire and Smoke Detection Using MobileNetV2

Forest fires pose significant threats to ecosystems, human life, and the global climate, necessitating rapid and reliable detection systems. Traditional fire detection approaches, including sensor networks, satellite monitoring, and centralized image analysis, often suffer from delayed response, high false positives, and limited deployment in remote areas. Recent deep learning-based methods offer high classification accuracy but are typically computationally intensive and unsuitable for low-power, real-time edge devices. This study presents an autonomous, edge-based forest fire and smoke detection system using a lightweight MobileNetV2 convolutional neural network. The model is trained on a balanced dataset of fire, smoke, and non-fire images and optimized for deployment on resource-constrained edge devices. The system performs near real-time inference, achieving a test accuracy of 97.98% with an average end-to-end prediction latency of 0.77 s per frame (approximately 1.3 FPS) on the Raspberry Pi 5 edge device. Predictions include the class label, confidence score, and timestamp, all generated locally without reliance on cloud connectivity, thereby enhancing security and robustness against potential cyber threats. Experimental results demonstrate that the proposed solution maintains high predictive performance comparable to state-of-the-art methods while providing efficient, offline operation suitable for real-world environmental monitoring and early wildfire mitigation. This approach enables cost-effective, scalable deployment in remote forest regions, combining accuracy, speed, and autonomous edge processing for timely fire and smoke detection.

Producción Científica

Dilshod Sharobiddinov mail , Hafeez Ur Rehman Siddiqui mail , Adil Ali Saleem mail , Gerardo Méndez Mezquita mail , Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx, Isabel de la Torre Díez mail ,

Sharobiddinov

<a class="ep_document_link" href="/17863/1/v16p4316.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Divulging Patterns: An Analytical Review for Machine Learning Methodologies for Breast Cancer Detection

Breast cancer is a lethal carcinoma impacting a considerable number of women across the globe. While preventive measures are limited, early detection remains the most effective strategy. Accurate classification of breast tumors into benign and malignant categories is important which may help physicians in diagnosing the disease faster. This survey investigates the emerging inclination and approaches in the area of machine learning (ML) for the diagnosis of breast cancer, pointing out the classification techniques based on both segmentation and feature selection. Certain datasets such as the Wisconsin Diagnostic Breast Cancer Dataset (WDBC), Wisconsin Breast Cancer Dataset Original (WBCD), Wisconsin Prognostic Breast Cancer Dataset (WPBC), BreakHis, and others are being evaluated in this study for the demonstration of their influence on the performance of the diagnostic tools and the accuracy of the models such as Support vector machine, Convolutional Neural Networks (CNNs) and ensemble approaches. The main shortcomings or research gaps such as prejudice of datasets, scarcity of generalizability, and interpretation challenges are highlighted. This research emphasizes the importance of the hybrid methodologies, cross-dataset validation, and the engineering of explainable AI to narrow these gaps and enhance the overall clinical acceptance of ML-based detection tools.

Producción Científica

Alveena Saleem mail , Muhammad Umair mail , Muhammad Tahir Naseem mail , Muhammad Zubair mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Shoaib Hassan mail , Imran Ashraf mail ,

Saleem

<a href="/17849/1/1-s2.0-S2590005625001043-main.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence

Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.

Producción Científica

Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,

Saleem