Diseño de un programa de capacitación docente en estrategias didácticas y técnicas de aprendizaje colaborativo (TAC) como herramienta de perfeccionamiento docente en beneficio de la comunidad educativa Frau Klier.
Tesis
Materias > Educación
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Cerrado
Español
El contexto mundial y la docencia en general, han propuesto nuevos retos en el año 2020, el efecto pandemia ha evidenciado falencias puntuales sobre las estrategias de los docentes para poder llegar al estudiantado de una manera asertiva, es por esta razón que como herramienta de perfeccionamiento y desarrollo continuo como profesionales y sobre todo como seres humanos que brinden calidad y calidez en la Unidad Educativa Frau Klier se ha propuesto en este proyecto, diseñar un programa de capacitación sobre estrategias y técnicas de aprendizaje colaborativo para la mejora del desempeño de los docentes de la Institución Educativa Frau Klier del distrito La Delicia , cantón Quito, provincia Pichincha, país Ecuador .En este sentido se tomaron consideraciones que brinden un apoyo más especializado a los estudiantes, aplicando metodologías que se ajusten a sus necesidades priorizando las destrezas en lugar de los contenidos, principalmente innovando en las técnicas de aprendizaje para así lograr conseguir desde los docentes la tan anhelada calidad educativa. El programa Maestros 4.0 será el resultado de este estudio que abordará desde su núcleo el aprendizaje constructivista social , aprendizaje colaborativo y Técnicas de aprendizaje colaborativo; donde el tipo de investigación por su naturaleza y contexto limitado dentro de la Unidad Educativa Frau Klier del distrito La Delicia , cantón Quito , provincia Pichincha ,país Ecuador, donde el estudio será deductivo descriptivo-exploratorio teniendo un enfoque cualitativo , que por las aspiraciones, y sobre todo el objetivo general de la metodología planteada será de Investigación acción participativa (IAP),para mejorar las prácticas dentro de la institución. Utilizando instrumentos como Focus Group, encuestas y entrevistas. Los resultados evidencian la utilidad de las técnicas y estrategias en el proceso de aprendizaje colaborativo que muestran la necesidad institucional de mejorar profesionalmente a su claustro docente. Por lo tanto, se presenta una propuesta de innovación que articula dimensiones tecnológicas y presenciales del proceso enseñanza-aprendizaje, es así que, se manifiesta la relevancia de planificar acertadamente las metodologías, estrategias y técnicas para garantizar el aprendizaje colaborativo y comprender que los elementos organizativos, pedagógicos y tecnológicos deben converger con el único objetivo de transformar la educación.
metadata
Chavez Montero, Gabriel Enrique
mail
cefk_gabrielchavezm@hotmail.com
(2022)
Diseño de un programa de capacitación docente en estrategias didácticas y técnicas de aprendizaje colaborativo (TAC) como herramienta de perfeccionamiento docente en beneficio de la comunidad educativa Frau Klier.
Masters thesis, SIN ESPECIFICAR.
Resumen
El contexto mundial y la docencia en general, han propuesto nuevos retos en el año 2020, el efecto pandemia ha evidenciado falencias puntuales sobre las estrategias de los docentes para poder llegar al estudiantado de una manera asertiva, es por esta razón que como herramienta de perfeccionamiento y desarrollo continuo como profesionales y sobre todo como seres humanos que brinden calidad y calidez en la Unidad Educativa Frau Klier se ha propuesto en este proyecto, diseñar un programa de capacitación sobre estrategias y técnicas de aprendizaje colaborativo para la mejora del desempeño de los docentes de la Institución Educativa Frau Klier del distrito La Delicia , cantón Quito, provincia Pichincha, país Ecuador .En este sentido se tomaron consideraciones que brinden un apoyo más especializado a los estudiantes, aplicando metodologías que se ajusten a sus necesidades priorizando las destrezas en lugar de los contenidos, principalmente innovando en las técnicas de aprendizaje para así lograr conseguir desde los docentes la tan anhelada calidad educativa. El programa Maestros 4.0 será el resultado de este estudio que abordará desde su núcleo el aprendizaje constructivista social , aprendizaje colaborativo y Técnicas de aprendizaje colaborativo; donde el tipo de investigación por su naturaleza y contexto limitado dentro de la Unidad Educativa Frau Klier del distrito La Delicia , cantón Quito , provincia Pichincha ,país Ecuador, donde el estudio será deductivo descriptivo-exploratorio teniendo un enfoque cualitativo , que por las aspiraciones, y sobre todo el objetivo general de la metodología planteada será de Investigación acción participativa (IAP),para mejorar las prácticas dentro de la institución. Utilizando instrumentos como Focus Group, encuestas y entrevistas. Los resultados evidencian la utilidad de las técnicas y estrategias en el proceso de aprendizaje colaborativo que muestran la necesidad institucional de mejorar profesionalmente a su claustro docente. Por lo tanto, se presenta una propuesta de innovación que articula dimensiones tecnológicas y presenciales del proceso enseñanza-aprendizaje, es así que, se manifiesta la relevancia de planificar acertadamente las metodologías, estrategias y técnicas para garantizar el aprendizaje colaborativo y comprender que los elementos organizativos, pedagógicos y tecnológicos deben converger con el único objetivo de transformar la educación.
| Tipo de Documento: | Tesis (Masters) |
|---|---|
| Palabras Clave: | Técnicas de aprendizaje colaborativo (TAC), investigación acción participativa (IAP), metodologías de aprendizaje, calidad educativa. |
| Clasificación temática: | Materias > Educación |
| Divisiones: | Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster |
| Depositado: | 20 Oct 2023 23:30 |
| Ultima Modificación: | 20 Oct 2023 23:30 |
| URI: | https://repositorio.unib.org/id/eprint/904 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a href="/17880/1/nutrients-17-03613.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background/Objectives: Estimating energy and macronutrients from food images is clinically relevant yet challenging, and rigorous evaluation requires transparent accuracy metrics with uncertainty and clear acknowledgement of reference data limitations across heterogeneous sources. This study assessed ChatGPT-5, a general-purpose vision-language model, across four scenarios differing in the amount and type of contextual information provided, using a composite dataset to quantify accuracy for calories and macronutrients. Methods: A total of 195 dishes were evaluated, sourced from Allrecipes.com, the SNAPMe dataset, and Home-prepared, weighed meals. Each dish was evaluated under Case 1 (image only), Case 2 (image plus standardized non-visual descriptors), Case 3 (image plus ingredient lists with amounts), and Case 4 (replicates Case 3 but excluding the image). The primary endpoint was kcal Mean Absolute Error (MAE); secondary endpoints included Median Absolute Error (MedAE) and Root Mean Square Error (RMSE) for kcal and macronutrients (protein, carbohydrates, and lipids), all reported with 95% Confidence Intervals (CIs) via dish-level bootstrap resampling and accompanied by absolute differences (Δ) between scenarios. Inference settings were standardized to support reproducibility and variance estimation. Source stratified analyses and quartile summaries were conducted to examine heterogeneity by curation level and nutrient ranges, with additional robustness checks for error complexity relationships. Results and Discussion: Accuracy improved from Case 1 to Case 2 and further in Case 3 for energy and all macronutrients when summarized by MAE, MedAE, and RMSE with 95% CIs, with absolute reductions (Δ) indicating material gains as contextual information increased. In contrast to Case 3, estimation accuracy declined in Case 4, underscoring the contribution of visual cues. Gains were largest in the Home-prepared dietitian-weighed subset and smaller yet consistent for Allrecipes.com and SNAPMe, reflecting differences in reference curation and measurement fidelity across sources. Scenario-level trends were concordant across sources, and stratified and quartile analyses showed coherent patterns of decreasing absolute errors with the provision of structured non-visual information and detailed ingredient data. Conclusions: ChatGPT-5 can deliver practically useful calorie and macronutrient estimates from food images, particularly when augmented with standardized nonvisual descriptors and detailed ingredients, as evidenced by reductions in MAE, MedAE, and RMSE with 95% CIs across scenarios. The decline in accuracy observed when the image was omitted, despite providing detailed ingredient information, indicates that visual cues contribute meaningfully to estimation performance and that improvements are not solely attributable to arithmetic from ingredient lists. Finally, to promote generalizability, it is recommended that future studies include repeated evaluations across diverse datasets, ensure public availability of prompts and outputs, and incorporate systematic comparisons with non-artificial-intelligence baselines.
Marcela Rodríguez- Jiménez mail , Gustavo Daniel Martín-del-Campo-Becerra mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Jorge Crespo-Álvarez mail jorge.crespo@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,
Rodríguez- Jiménez
<a href="/17885/1/s41598-025-26052-7.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Mango is one of the most beloved fruits and plays an indispensable role in the agricultural economies of many tropical countries like Pakistan, India, and other Southeast Asian countries. Similar to other fruits, mango cultivation is also threatened by various diseases, including Anthracnose and Red Rust. Although farmers try to mitigate such situations on time, early and accurate detection of mango diseases remains challenging due to multiple factors, such as limited understanding of disease diversity, similarity in symptoms, and frequent misclassification. To avoid such instances, this study proposes a multimodal deep learning framework that leverages both leaf and fruit images to improve classification performance and generalization. Individual CNN-based pre-trained models, including ResNet-50, MobileNetV2, EfficientNet-B0, and ConvNeXt, were trained separately on curated datasets of mango leaf and fruit diseases. A novel Modality Attention Fusion (MAF) mechanism was introduced to dynamically weight and combine predictions from both modalities based on their discriminative strength, as some diseases are more prominent on leaves than on fruits, and vice versa. To address overfitting and improve generalization, a class-aware augmentation pipeline was integrated, which performs augmentation according to the specific characteristics of each class. The proposed attention-based fusion strategy significantly outperformed individual models and static fusion approaches, achieving a test accuracy of 99.08%, an F1 score of 99.03%, and a perfect ROC-AUC of 99.96% using EfficientNet-B0 as the base. To evaluate the model’s real-world applicability, an interactive web application was developed using the Django framework and evaluated through out-of-distribution (OOD) testing on diverse mango samples collected from public sources. These findings underline the importance of combining visual cues from multiple organs of plants and adapting model attention to contextual features for real-world agricultural diagnostics.
Muhammad Mohsin mail , Muhammad Shadab Alam Hashmi mail , Irene Delgado Noya mail irene.delgado@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Nagwan Abdel Samee mail , Imran Ashraf mail ,
Mohsin
en
close
Food security is a universal need worldwide. This study explored the relationship between food security and adherence to the Mediterranean diet in the context of the DELICIOUS project. A survey involving 2,011 parents of children and adolescents aged 6–17 years was conducted. Adherence to the Mediterranean diet was assessed through the KIDMED score. Information regarding the ease of accessing Mediterranean foods, economic allowance, employment and residence was collected. Logistic regressions analyses were performed to test the associations. Individuals living in rural areas and reporting difficulty in obtaining all studied foods were less likely to follow the Mediterranean diet. Higher adherence was associated with a household monthly income higher than €4000. No associations with family status and no differences across countries were found. The progressive shift away from the Mediterranean diet may depend not only on cultural preferences for unhealthier, industrial alternatives but also on family budgets and food accessibility.
Francesca Scazzina mail , Alice Rosi mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Carlos Poveda-Loor mail , Osama Abdelkarim mail , Mohamed Aly mail , Evelyn Frias-Toral mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Lorenzo Monasta mail , Nadia Paladino mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,
Scazzina
<a class="ep_document_link" href="/17890/1/PIIS2001037025004581.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Enhancing detection of epileptic seizures using transfer learning and EEG brain activity signals
Epileptic seizures are neurological events characterized by sudden and excessive electrical discharges in the brain, leading to disruptions in brain function. Epileptic seizures can lead to life-threatening situations such as status epilepticus, which is characterized by prolonged or recurrent seizures and may lead to respiratory distress, aspiration pneumonia, and cardiac arrhythmias. Therefore, there is a need for an automated approach that can efficiently diagnose epileptic seizures at an early stage. The primary objective of this study is to develop a highly accurate approach for the early diagnosis of epileptic seizures. We use electroencephalography (EEG) signal data based on different brain activities to conduct experiments for epileptic seizure detection. For this purpose, a novel transfer learning technique called random forest-gated recurrent unit (RFGR) is proposed. The EEG brain activity signal data is fed into the RFGR model to generate a new feature set. The newly generated features are based on the class prediction probabilities extracted by the RFGR and are utilized to train models. Extensive experiments are carried out to investigate the performance of the proposed approach. Results demonstrate that the RFGR, when used with the random forest model, outperforms state-of-the-art techniques, achieving a high accuracy of 99.00 %. Additionally, explainable artificial intelligence analysis is utilized to provide transparent and understandable explanations of the decision-making processes of the proposed approach.
Erol Kına mail , Ali Raza mail , Prudhvi Chowdary Are mail , Carmen Lilí Rodríguez Velasco mail carmen.rodriguez@uneatlantico.es, Julién Brito Ballester mail julien.brito@uneatlantico.es, Isabel de la Torre Diez mail , Naveed Anwer Butt mail , Imran Ashraf mail ,
Kına
<a class="ep_document_link" href="/17858/1/s41598-025-18979-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Detection and classification of brain tumor using a hybrid learning model in CT scan images
Accurate diagnosis of brain tumors is critical in understanding the prognosis in terms of the type, growth rate, location, removal strategy, and overall well-being of the patients. Among different modalities used for the detection and classification of brain tumors, a computed tomography (CT) scan is often performed as an early-stage procedure for minor symptoms like headaches. Automated procedures based on artificial intelligence (AI) and machine learning (ML) methods are used to detect and classify brain tumors in Computed Tomography (CT) scan images. However, the key challenges in achieving the desired outcome are associated with the model’s complexity and generalization. To address these issues, we propose a hybrid model that extracts features from CT images using classical machine learning. Additionally, although MRI is a common modality for brain tumor diagnosis, its high cost and longer acquisition time make CT scans a more practical choice for early-stage screening and widespread clinical use. The proposed framework has different stages, including image acquisition, pre-processing, feature extraction, feature selection, and classification. The hybrid architecture combines features from ResNet50, AlexNet, LBP, HOG, and median intensity, classified using a multilayer perceptron. The selection of the relevant features in our proposed hybrid model was extracted using the SelectKBest algorithm. Thus, it optimizes the proposed model performance. In addition, the proposed model incorporates data augmentation to handle the imbalanced datasets. We employed a scoring function to extract the features. The Classification is ensured using a multilayer perceptron neural network (MLP). Unlike most existing hybrid approaches, which primarily target MRI-based brain tumor classification, our method is specifically designed for CT scan images, addressing their unique noise patterns and lower soft-tissue contrast. To the best of our knowledge, this is the first work to integrate LBP, HOG, median intensity, and deep features from both ResNet50 and AlexNet in a structured fusion pipeline for CT brain tumor classification. The proposed hybrid model is tested on data from numerous sources and achieved an accuracy of 94.82%, precision of 94.52%, specificity of 98.35%, and sensitivity of 94.76% compared to state-of-the-art models. While MRI-based models often report higher accuracies, the proposed model achieves 94.82% on CT scans, within 3–4% of leading MRI-based approaches, demonstrating strong generalization despite the modality difference. The proposed hybrid model, combining hand-crafted and deep learning features, effectively improves brain tumor detection and classification accuracy in CT scans. It has the potential for clinical application, aiding in early and accurate diagnosis. Unlike MRI, which is often time-intensive and costly, CT scans are more accessible and faster to acquire, making them suitable for early-stage screening and emergency diagnostics. This reinforces the practical and clinical value of the proposed model in real-world healthcare settings.
Roja Ghasemi mail , Naveed Islam mail , Samin Bayat mail , Muhammad Shabir mail , Shahid Rahman mail , Farhan Amin mail , Isabel de la Torre mail , Ángel Gabriel Kuc Castilla mail angel.kuc@uneatlantico.es, Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx,
Ghasemi
