Grado de percepción del currículo oculto de los profesores de ciencias básicas por parte de estudiantes del programa de pregrado en Bioquímica de la Universidad Antonio Nariño, Bogotá – Colombia
Tesis
Materias > Educación
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Cerrado
Español
El currículo educativo es la estructura central del diseño curricular de una institución o de un programa. Se define como aquel que establece los lineamientos, y guías que son la base en un proyecto educativo de una institución, y es ejecutado por directivos, profesores y estudiantes, con el objeto de llevar a buen término el objetivo educativo propuesto. El currículo es el punto de inicio para planear una directriz o instrucción, un sistema de planeación educativo o el estudio de una disciplina a enseñar según los contenidos que deban ser apropiados por un estudiante. Este se adapta permanentemente y puede clasificarse como currículo oficial, operacional, nulo, extracurrículo y oculto. Este último está definido como aquel que existe, pero no se evidencia de manera directa, y está inmerso en todas las actividades, tareas, y/o procedimientos que establece la institución educativa relacionadas con los valores humanos, comportamientos, actitudes, características propias de la naturaleza de la institución y de sus participantes, ya sea estudiantes, profesores, y/o directivos, lo cual implica la valoración e inclusión de todos los aspectos culturales de una comunidad académica. El currículo oculto es tan importante como el oficial de una institución, de sus programas y de sus profesores, y se refleja en todos los espacios educativos. El presente trabajo permitió identificar el grado de percepción del currículo oculto del profesorado de un programa de estudios de nivel universitario, el programa de pregrado de bioquímica de la Sede circunvalar de la Universidad Antonio Nariño (Bogotá, Colombia) por parte de sus estudiantes, y establecer que este tipo de currículo es un factor de influencia importante frente a la motivación y disposición de los estudiantes para el abordaje y aprendizaje en el área de las ciencias básicas. Así mismo permitió identificar que sí existe un impacto de este currículo oculto en los procesos académicos de los estudiantes de este programa. La población a estudio se delimitó en una muestra de 56 estudiantes del programa de bioquímica matriculados en 2020-2, y se utilizó una metodología de investigación con enfoque cualitativo, de Naturaleza Básica, con abordaje del problema de tipo exploratorio, inductivo y descriptivo y modalidad Transaccional y transversal. Como herramienta para la recolección de datos se utilizó un cuestionario de 20 preguntas. Los resultados permitieron encontrar un alto grado de percepción del currículo oculto de los profesores de ciencias básicas del programa de Bioquímica, también dejó reconocer la manera como los estudiantes ven a sus profesores, y su capacidad de encontrar en ellos no solamente una fuente de conocimientos, sino a seres que sienten, que se emocionan, que reaccionan y que no son perfectos. Se identificó que sí existe un impacto del currículo oculto de sus profesores en los procesos académicos de estos estudiantes, y constatar que este impacto es positivo o negativo, ya que no solamente se aprenden y/o imitan características favorables y/o positivas de sus profesores sino también aquellas que el estudiante considera que pueden servirle en un futuro, aun cuando no sean las más correctas o validables.
metadata
Murillo Romero, Gladys Angelica
mail
murillo.angelica@gmail.com
(2022)
Grado de percepción del currículo oculto de los profesores de ciencias básicas por parte de estudiantes del programa de pregrado en Bioquímica de la Universidad Antonio Nariño, Bogotá – Colombia.
Masters thesis, SIN ESPECIFICAR.
Resumen
El currículo educativo es la estructura central del diseño curricular de una institución o de un programa. Se define como aquel que establece los lineamientos, y guías que son la base en un proyecto educativo de una institución, y es ejecutado por directivos, profesores y estudiantes, con el objeto de llevar a buen término el objetivo educativo propuesto. El currículo es el punto de inicio para planear una directriz o instrucción, un sistema de planeación educativo o el estudio de una disciplina a enseñar según los contenidos que deban ser apropiados por un estudiante. Este se adapta permanentemente y puede clasificarse como currículo oficial, operacional, nulo, extracurrículo y oculto. Este último está definido como aquel que existe, pero no se evidencia de manera directa, y está inmerso en todas las actividades, tareas, y/o procedimientos que establece la institución educativa relacionadas con los valores humanos, comportamientos, actitudes, características propias de la naturaleza de la institución y de sus participantes, ya sea estudiantes, profesores, y/o directivos, lo cual implica la valoración e inclusión de todos los aspectos culturales de una comunidad académica. El currículo oculto es tan importante como el oficial de una institución, de sus programas y de sus profesores, y se refleja en todos los espacios educativos. El presente trabajo permitió identificar el grado de percepción del currículo oculto del profesorado de un programa de estudios de nivel universitario, el programa de pregrado de bioquímica de la Sede circunvalar de la Universidad Antonio Nariño (Bogotá, Colombia) por parte de sus estudiantes, y establecer que este tipo de currículo es un factor de influencia importante frente a la motivación y disposición de los estudiantes para el abordaje y aprendizaje en el área de las ciencias básicas. Así mismo permitió identificar que sí existe un impacto de este currículo oculto en los procesos académicos de los estudiantes de este programa. La población a estudio se delimitó en una muestra de 56 estudiantes del programa de bioquímica matriculados en 2020-2, y se utilizó una metodología de investigación con enfoque cualitativo, de Naturaleza Básica, con abordaje del problema de tipo exploratorio, inductivo y descriptivo y modalidad Transaccional y transversal. Como herramienta para la recolección de datos se utilizó un cuestionario de 20 preguntas. Los resultados permitieron encontrar un alto grado de percepción del currículo oculto de los profesores de ciencias básicas del programa de Bioquímica, también dejó reconocer la manera como los estudiantes ven a sus profesores, y su capacidad de encontrar en ellos no solamente una fuente de conocimientos, sino a seres que sienten, que se emocionan, que reaccionan y que no son perfectos. Se identificó que sí existe un impacto del currículo oculto de sus profesores en los procesos académicos de estos estudiantes, y constatar que este impacto es positivo o negativo, ya que no solamente se aprenden y/o imitan características favorables y/o positivas de sus profesores sino también aquellas que el estudiante considera que pueden servirle en un futuro, aun cuando no sean las más correctas o validables.
| Tipo de Documento: | Tesis (Masters) |
|---|---|
| Palabras Clave: | Diseño curricular, Currículo oculto, percepción, profesores, estudiantes |
| Clasificación temática: | Materias > Educación |
| Divisiones: | Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster |
| Depositado: | 20 Oct 2023 23:30 |
| Ultima Modificación: | 20 Oct 2023 23:30 |
| URI: | https://repositorio.unib.org/id/eprint/748 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a href="/17858/1/s41598-025-18979-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Detection and classification of brain tumor using a hybrid learning model in CT scan images
Accurate diagnosis of brain tumors is critical in understanding the prognosis in terms of the type, growth rate, location, removal strategy, and overall well-being of the patients. Among different modalities used for the detection and classification of brain tumors, a computed tomography (CT) scan is often performed as an early-stage procedure for minor symptoms like headaches. Automated procedures based on artificial intelligence (AI) and machine learning (ML) methods are used to detect and classify brain tumors in Computed Tomography (CT) scan images. However, the key challenges in achieving the desired outcome are associated with the model’s complexity and generalization. To address these issues, we propose a hybrid model that extracts features from CT images using classical machine learning. Additionally, although MRI is a common modality for brain tumor diagnosis, its high cost and longer acquisition time make CT scans a more practical choice for early-stage screening and widespread clinical use. The proposed framework has different stages, including image acquisition, pre-processing, feature extraction, feature selection, and classification. The hybrid architecture combines features from ResNet50, AlexNet, LBP, HOG, and median intensity, classified using a multilayer perceptron. The selection of the relevant features in our proposed hybrid model was extracted using the SelectKBest algorithm. Thus, it optimizes the proposed model performance. In addition, the proposed model incorporates data augmentation to handle the imbalanced datasets. We employed a scoring function to extract the features. The Classification is ensured using a multilayer perceptron neural network (MLP). Unlike most existing hybrid approaches, which primarily target MRI-based brain tumor classification, our method is specifically designed for CT scan images, addressing their unique noise patterns and lower soft-tissue contrast. To the best of our knowledge, this is the first work to integrate LBP, HOG, median intensity, and deep features from both ResNet50 and AlexNet in a structured fusion pipeline for CT brain tumor classification. The proposed hybrid model is tested on data from numerous sources and achieved an accuracy of 94.82%, precision of 94.52%, specificity of 98.35%, and sensitivity of 94.76% compared to state-of-the-art models. While MRI-based models often report higher accuracies, the proposed model achieves 94.82% on CT scans, within 3–4% of leading MRI-based approaches, demonstrating strong generalization despite the modality difference. The proposed hybrid model, combining hand-crafted and deep learning features, effectively improves brain tumor detection and classification accuracy in CT scans. It has the potential for clinical application, aiding in early and accurate diagnosis. Unlike MRI, which is often time-intensive and costly, CT scans are more accessible and faster to acquire, making them suitable for early-stage screening and emergency diagnostics. This reinforces the practical and clinical value of the proposed model in real-world healthcare settings.
Roja Ghasemi mail , Naveed Islam mail , Samin Bayat mail , Muhammad Shabir mail , Shahid Rahman mail , Farhan Amin mail , Isabel de la Torre mail , Ángel Gabriel Kuc Castilla mail angel.kuc@uneatlantico.es, Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx,
Ghasemi
<a class="ep_document_link" href="/17849/1/1-s2.0-S2590005625001043-main.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence
Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.
Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,
Saleem
<a class="ep_document_link" href="/17857/1/excli2025-8779.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Polyphenols are naturally occurring compounds that can be found in plant-based foods, including fruits, vegetables, nuts, seeds, herbs, spices, and beverages, the use of which has been linked to enhanced brain health and cognitive function. These natural molecules are broadly classified into two main groups: flavonoids and non-flavonoid polyphenols, the latter including phenolic acids, stilbenes, and tannins. Flavonoids are primarily known for their potent antioxidant properties, which help neutralize harmful reactive oxygen species (ROS) in the brain, thereby reducing oxidative stress, a key contributor to neurodegenerative diseases. In addition to their antioxidant effects, flavonoids have been shown to modulate inflammation, enhance neuronal survival, and support neurogenesis, all of which are critical for maintaining cognitive function. Phenolic acids possess strong antioxidant properties and are believed to protect brain cells from oxidative damage. Neuroprotective effects of these molecules can also depend on their ability to modulate signaling pathways associated with inflammation and neuronal apoptosis. Among polyphenols, hydroxycinnamic acids such as caffeic acid have been shown to enhance blood-brain barrier permeability, which may increase the delivery of other protective compounds to the brain. Another compound of interest is represented by resveratrol, a stilbene extensively studied for its potential neuroprotective properties related to its ability to activate the sirtuin pathway, a molecular signaling pathway involved in cellular stress response and aging. Lignans, on the other hand, have shown promise in reducing neuroinflammation and oxidative stress, which could help slow the progression of neurodegenerative diseases and cognitive decline. Polyphenols belonging to different subclasses, such as flavonoids, phenolic acids, stilbenes, and lignans, exert neuroprotective effects by regulating microglial activation, suppressing pro-inflammatory cytokines, and mitigating oxidative stress. These compounds act through multiple signaling pathways, including NF-κB, MAPK, and Nrf2, and they may also influence genetic regulation of inflammation and immune responses at brain level. Despite their potential for brain health and cognitive function, polyphenols are often characterized by low bioavailability, something that deserves attention when considering their therapeutic potential. Future translational studies are needed to better understand the right dosage, the overall diet, the correct target population, as well as ideal formulations allowing to overcome bioavailability limitations.
Justyna Godos mail , Giuseppe Carota mail , Giuseppe Caruso mail , Agnieszka Micek mail , Evelyn Frias-Toral mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Julién Brito Ballester mail julien.brito@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Carmen Lilí Rodríguez Velasco mail carmen.rodriguez@uneatlantico.es, José L. Quiles mail jose.quiles@uneatlantico.es,
Godos
<a href="/17844/1/frai-1-1572645.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A systematic review of deep learning methods for community detection in social networks
Introduction: The rapid expansion of generated data through social networks has introduced significant challenges, which underscores the need for advanced methods to analyze and interpret these complex systems. Deep learning has emerged as an effective approach, offering robust capabilities to process large datasets, and uncover intricate relationships and patterns. Methods: In this systematic literature review, we explore research conducted over the past decade, focusing on the use of deep learning techniques for community detection in social networks. A total of 19 studies were carefully selected from reputable databases, including the ACM Library, Springer Link, Scopus, Science Direct, and IEEE Xplore. This review investigates the employed methodologies, evaluates their effectiveness, and discusses the challenges identified in these works. Results: Our review shows that models like graph neural networks (GNNs), autoencoders, and convolutional neural networks (CNNs) are some of the most commonly used approaches for community detection. It also examines the variety of social networks, datasets, evaluation metrics, and employed frameworks in these studies. Discussion: However, the analysis highlights several challenges, such as scalability, understanding how the models work (interpretability), and the need for solutions that can adapt to different types of networks. These issues stand out as important areas that need further attention and deeper research. This review provides meaningful insights for researchers working in social network analysis. It offers a detailed summary of recent developments, showcases the most impactful deep learning methods, and identifies key challenges that remain to be explored.
Mohamed El-Moussaoui mail , Mohamed Hanine mail , Ali Kartit mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Isabel de la Torre Díez mail ,
El-Moussaoui
<a class="ep_document_link" href="/17853/1/fmed-12-1600855.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Transformer-based ECG classification for early detection of cardiac arrhythmias
Electrocardiogram (ECG) classification plays a critical role in early detection and trocardiogram (ECG) classification plays a critical role in early detection and monitoring cardiovascular diseases. This study presents a Transformer-based deep learning framework for automated ECG classification, integrating advanced preprocessing, feature selection, and dimensionality reduction techniques to improve model performance. The pipeline begins with signal preprocessing, where raw ECG data are denoised, normalized, and relabeled for compatibility with attention-based architectures. Principal component analysis (PCA), correlation analysis, and feature engineering is applied to retain the most informative features. To assess the discriminative quality of the selected features, t-distributed stochastic neighbor embedding (t-SNE) is used for visualization, revealing clear class separability in the transformed feature space. The refined dataset is then input to a Transformer- based model trained with optimized loss functions, regularization strategies, and hyperparameter tuning. The proposed model demonstrates strong performance on the MIT-BIH benchmark dataset, showing results consistent with or exceeding prior studies. However, due to differences in datasets and evaluation protocols, these comparisons are indicative rather than conclusive. The model effectively classifies ECG signals into categories such as Normal, atrial premature contraction (APC), ventricular premature contraction (VPC), and Fusion beats. These results underscore the effectiveness of Transformer-based models in biomedical signal processing and suggest potential for scalable, automated ECG diagnostics. However, deployment in real-time or resource-constrained settings will require further optimization and validation.
Sunnia Ikram mail , Amna Ikram mail , Harvinder Singh mail , Malik Daler Ali Awan mail , Sajid Naveed mail , Isabel De la Torre Díez mail , Henry Fabian Gongora mail henry.gongora@uneatlantico.es, Thania Chio Montero mail ,
Ikram
