A ferramenta SWOT na gestão escolar

Article Subjects > Teaching Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Abierto Portugués O estudo aqui edificado apresenta como seu principal desígnio avaliar o modo como uma importante ferramenta de gestão pode contribuir, mostrando a eficiência em resultados na aprendizagem por meio de uma gestão escolar que busca ser democrática e como isso influencia no dia a dia de uma unidade escolar. Para tanto, falar-se-á aqui acerca da contribuição da ferramenta Swot na Gestão Escolar, revelando-se como ela funciona e como poderá beneficiar nesta área tão importante. Referindo-se à metodologia aproveitada para a edificação deste breve estudo, cita-se a escolha pela pesquisa bibliográfica, por meio da qual tornou-se possível colher material que contribuirá com a futura abordagem teórica que será feita, tendo em vista pensamentos e conjecturas de estudiosos famosos como Lima (2013), Nóvoa (2002) e outros. Por meio de tal análise acerca do material colhido e estudado durante a efetivação da pesquisa, concluiu-se ser clara a incoerência vivenciada entre a realidade escolar, o que a escola quer, o que a escola faz, e o dia a dia da gestão escolar, a qual precisa tomar decisões que, certamente, acabarão impactando, positiva ou negativamente, tanto no desenvolvimento quanto na formação de seus educandos. Conclui-se, pois, a importância de se trabalhar com uma ferramenta como Swot, especialmente quando se fala do trabalho encarado pela gestão escolar. metadata Alves Guimarães, Ueudison and Rodrigues Dantas de Brito, Junea Graciele and Rodrigues Moniz, Sibele Selvina de Oliveira and Picinini Lengler, Loreni mail UNSPECIFIED (2022) A ferramenta SWOT na gestão escolar. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 3 (11). e3112271. ISSN 2675-6218

Full text not available from this repository.

Abstract

O estudo aqui edificado apresenta como seu principal desígnio avaliar o modo como uma importante ferramenta de gestão pode contribuir, mostrando a eficiência em resultados na aprendizagem por meio de uma gestão escolar que busca ser democrática e como isso influencia no dia a dia de uma unidade escolar. Para tanto, falar-se-á aqui acerca da contribuição da ferramenta Swot na Gestão Escolar, revelando-se como ela funciona e como poderá beneficiar nesta área tão importante. Referindo-se à metodologia aproveitada para a edificação deste breve estudo, cita-se a escolha pela pesquisa bibliográfica, por meio da qual tornou-se possível colher material que contribuirá com a futura abordagem teórica que será feita, tendo em vista pensamentos e conjecturas de estudiosos famosos como Lima (2013), Nóvoa (2002) e outros. Por meio de tal análise acerca do material colhido e estudado durante a efetivação da pesquisa, concluiu-se ser clara a incoerência vivenciada entre a realidade escolar, o que a escola quer, o que a escola faz, e o dia a dia da gestão escolar, a qual precisa tomar decisões que, certamente, acabarão impactando, positiva ou negativamente, tanto no desenvolvimento quanto na formação de seus educandos. Conclui-se, pois, a importância de se trabalhar com uma ferramenta como Swot, especialmente quando se fala do trabalho encarado pela gestão escolar.

Item Type: Article
Additional Information: Alumnos, no PDI
Uncontrolled Keywords: Ferramenta SWOT, Escola
Subjects: Subjects > Teaching
Divisions: Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Date Deposited: 03 Feb 2023 23:30
Last Modified: 11 Jul 2023 23:30
URI: https://repositorio.unib.org/id/eprint/5703

Actions (login required)

View Item View Item

<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a href="/14584/1/s41598-024-73664-6.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Performance of the 4C and SEIMC scoring systems in predicting mortality from onset to current COVID-19 pandemic in emergency departments

The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.

Producción Científica

Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,

de Santos Castro

<a class="ep_document_link" href="/14915/1/s41598-024-74357-w.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Enhanced detection of diabetes mellitus using novel ensemble feature engineering approach and machine learning model

Diabetes is a persistent health condition led by insufficient use or inappropriate use of insulin in the body. If left undetected, it can lead to further complications involving organ damage such as heart, lungs, and eyes. Timely detection of diabetes helps obtain the right medication, diet, and exercise plan to lead a healthy life. ML approach has been utilized to obtain rapid and reliable diabetes detection, however, existing approaches suffer from the use of limited datasets, lack of generalizability, and lower accuracy. This study proposes a novel feature extraction approach to overcome these limitations by using an ensemble of convolutional neural network (CNN) and long short-term memory (LSTM) models. Multiple datasets are combined to make a larger dataset for experiments and multiple features are utilized for investigating the efficacy of the proposed approach. Features from the extra tree classifier, CNN, and LSTM are also considered for comparison. Experimental results reveal the superb performance of CNN-LSTM-based features with random forest model obtaining a 0.99 accuracy score. This performance is further validated by comparison with existing approaches and k-fold cross-validation which shows the proposed approach provides robust results.

Producción Científica

Furqan Rustam mail , Ahmad Sami Al-Shamayleh mail , Rahman Shafique mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, J. Pablo Miramontes Gonzalez mail , Imran Ashraf mail ,

Rustam

<a class="ep_document_link" href="/14950/1/fmicb-15-1481418.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Evolving epidemiology, clinical features, and genotyping of dengue outbreaks in Bangladesh, 2000–2024: a systematic review

Background: The 2023 dengue outbreak has proven that dengue is not only an endemic disease but also an emerging health threat in Bangladesh. Integrated studies on the epidemiology, clinical characteristics, seasonality, and genotype of dengue are limited. This study was conducted to determine recent trends in the molecular epidemiology, clinical features, and seasonality of dengue outbreaks. Methods: We analyzed data from 41 original studies, extracting epidemiological information from all 41 articles, clinical symptoms from 30 articles, and genotypic diversity from 11 articles. The study adhered to the standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement and Cochrane Collaboration guidelines. Conclusion: This study provides integrated insights into the molecular epidemiology, clinical features, seasonality, and transmission of dengue in Bangladesh and highlights research gaps for future studies.

Producción Científica

Nadim Sharif mail , Rubayet Rayhan Opu mail , Tama Saha mail , Abdullah Ibna Masud mail , Jannatin Naim mail , Khalaf F. Alsharif mail , Khalid J. Alzahrani mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Irene Delgado Noya mail irene.delgado@uneatlantico.es, Isabel De la Torre Díez mail , Shuvra Kanti Dey mail ,

Sharif

<a href="/14951/1/sensors-24-06965-v2.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Decoding Brain Signals from Rapid-Event EEG for Visual Analysis Using Deep Learning

The perception and recognition of objects around us empower environmental interaction. Harnessing the brain’s signals to achieve this objective has consistently posed difficulties. Researchers are exploring whether the poor accuracy in this field is a result of the design of the temporal stimulation (block versus rapid event) or the inherent complexity of electroencephalogram (EEG) signals. Decoding perceptive signal responses in subjects has become increasingly complex due to high noise levels and the complex nature of brain activities. EEG signals have high temporal resolution and are non-stationary signals, i.e., their mean and variance vary overtime. This study aims to develop a deep learning model for the decoding of subjects’ responses to rapid-event visual stimuli and highlights the major factors that contribute to low accuracy in the EEG visual classification task.The proposed multi-class, multi-channel model integrates feature fusion to handle complex, non-stationary signals. This model is applied to the largest publicly available EEG dataset for visual classification consisting of 40 object classes, with 1000 images in each class. Contemporary state-of-the-art studies in this area investigating a large number of object classes have achieved a maximum accuracy of 17.6%. In contrast, our approach, which integrates Multi-Class, Multi-Channel Feature Fusion (MCCFF), achieves a classification accuracy of 33.17% for 40 classes. These results demonstrate the potential of EEG signals in advancing EEG visual classification and offering potential for future applications in visual machine models.

Producción Científica

Madiha Rehman mail , Humaira Anwer mail , Helena Garay mail helena.garay@uneatlantico.es, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Isabel De la Torre Díez mail , Hafeez ur Rehman Siddiqui mail , Saleem Ullah mail ,

Rehman