Underwater Wireless Sensor Networks: Enabling Technologies for Node Deployment and Data Collection Challenges

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Cerrado Inglés The development of underwater wireless sensor networks (UWSNs) has attracted great interest from many researchers and scientists to detect and monitor unfamiliar underwater domains. To achieve this goal, collecting data with an underwater network of sensors is primordial. Moreover, real-time information transmission needs to be achieved through efficient and enabling technologies for node deployment and data collection in UWSN. The Internet of Things (IoT) helps in real time data transmission, and it has great potential in UWSN, i.e., the Internet of Underwater Things (IoUT). The Internet of Underwater Things (IoUT) is a modern communication ecosystem for undersea things in marine and underwater environments. Intelligent boats and ships, automatic maritime transportation, location and navigation, undersea discovery, catastrophe forecasting and avoidance, as well as intelligent monitoring and security are all intertwined with IoUT technology. In this paper, the enabling technologies of UWSN along with several fundamental key aspects are scrupulously explained. The study aims to inquire about node deployment and data collection strategies, and then encourages researchers to lay the groundwork for new node deployment and advanced data collection techniques that enable effective underwater communication techniques. Besides different types of communication media, applications of UWSNs are also part of this paper. Various existing data collection protocols based on the deployment models are simulated using Network Simulator (NS 2.30) to analyse and compare the performance of state-of-the-art techniques. metadata Chaudhary, Monika and Goyal, Nitin and Benslimane, Abderrahim and Awasthi, Lalit Kumar and Alwadain, Ayed and Singh, Aman mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es (2022) Underwater Wireless Sensor Networks: Enabling Technologies for Node Deployment and Data Collection Challenges. IEEE Internet of Things Journal. p. 1. ISSN 2372-2541

Full text not available from this repository.

Abstract

The development of underwater wireless sensor networks (UWSNs) has attracted great interest from many researchers and scientists to detect and monitor unfamiliar underwater domains. To achieve this goal, collecting data with an underwater network of sensors is primordial. Moreover, real-time information transmission needs to be achieved through efficient and enabling technologies for node deployment and data collection in UWSN. The Internet of Things (IoT) helps in real time data transmission, and it has great potential in UWSN, i.e., the Internet of Underwater Things (IoUT). The Internet of Underwater Things (IoUT) is a modern communication ecosystem for undersea things in marine and underwater environments. Intelligent boats and ships, automatic maritime transportation, location and navigation, undersea discovery, catastrophe forecasting and avoidance, as well as intelligent monitoring and security are all intertwined with IoUT technology. In this paper, the enabling technologies of UWSN along with several fundamental key aspects are scrupulously explained. The study aims to inquire about node deployment and data collection strategies, and then encourages researchers to lay the groundwork for new node deployment and advanced data collection techniques that enable effective underwater communication techniques. Besides different types of communication media, applications of UWSNs are also part of this paper. Various existing data collection protocols based on the deployment models are simulated using Network Simulator (NS 2.30) to analyse and compare the performance of state-of-the-art techniques.

Item Type: Article
Uncontrolled Keywords: Data collection, data communication, node deployment, underwater wireless sensor networks
Subjects: Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Date Deposited: 31 Jan 2023 23:30
Last Modified: 18 Jul 2023 23:30
URI: https://repositorio.unib.org/id/eprint/5637

Actions (login required)

View Item View Item

<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a href="/15198/1/nutrients-16-03859.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Carotenoids Intake and Cardiovascular Prevention: A Systematic Review

Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.

Producción Científica

Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,

Sumalla Cano

<a class="ep_document_link" href="/15441/1/journal.pone.0313835.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

StackIL10: A stacking ensemble model for the improved prediction of IL-10 inducing peptides

Interleukin-10, a highly effective cytokine recognized for its anti-inflammatory properties, plays a critical role in the immune system. In addition to its well-documented capacity to mitigate inflammation, IL-10 can unexpectedly demonstrate pro-inflammatory characteristics under specific circumstances. The presence of both aspects emphasizes the vital need to identify the IL-10-induced peptide. To mitigate the drawbacks of manual identification, which include its high cost, this study introduces StackIL10, an ensemble learning model based on stacking, to identify IL-10-inducing peptides in a precise and efficient manner. Ten Amino-acid-composition-based Feature Extraction approaches are considered. The StackIL10, stacking ensemble, the model with five optimized Machine Learning Algorithm (specifically LGBM, RF, SVM, Decision Tree, KNN) as the base learners and a Logistic Regression as the meta learner was constructed, and the identification rate reached 91.7%, MCC of 0.833 with 0.9078 Specificity. Experiments were conducted to examine the impact of various enhancement techniques on the correctness of IL-10 Prediction. These experiments included comparisons between single models and various combinations of stacking-based ensemble models. It was demonstrated that the model proposed in this study was more effective than singular models and produced satisfactory results, thereby improving the identification of peptides that induce IL-10.

Producción Científica

Salman Sadullah Usmani mail , Izaz Ahmmed Tuhin mail , Md. Rajib Mia mail , Md. Monirul Islam mail , Imran Mahmud mail , Carlos Eduardo Uc Ríos mail carlos.uc@unini.edu.mx, Henry Fabian Gongora mail henry.gongora@uneatlantico.es, Imran Ashraf mail , Md. Abdus Samad mail ,

Usmani

<a href="/15444/1/s41598-024-79106-7.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Roman urdu hate speech detection using hybrid machine learning models and hyperparameter optimization

With the rapid increase of users over social media, cyberbullying, and hate speech problems have arisen over the past years. Automatic hate speech detection (HSD) from text is an emerging research problem in natural language processing (NLP). Researchers developed various approaches to solve the automatic hate speech detection problem using different corpora in various languages, however, research on the Urdu language is rather scarce. This study aims to address the HSD task on Twitter using Roman Urdu text. The contribution of this research is the development of a hybrid model for Roman Urdu HSD, which has not been previously explored. The novel hybrid model integrates deep learning (DL) and transformer models for automatic feature extraction, combined with machine learning algorithms (MLAs) for classification. To further enhance model performance, we employ several hyperparameter optimization (HPO) techniques, including Grid Search (GS), Randomized Search (RS), and Bayesian Optimization with Gaussian Processes (BOGP). Evaluation is carried out on two publicly available benchmarks Roman Urdu corpora comprising HS-RU-20 corpus and RUHSOLD hate speech corpus. Results demonstrate that the Multilingual BERT (MBERT) feature learner, paired with a Support Vector Machine (SVM) classifier and optimized using RS, achieves state-of-the-art performance. On the HS-RU-20 corpus, this model attained an accuracy of 0.93 and an F1 score of 0.95 for the Neutral-Hostile classification task, and an accuracy of 0.89 with an F1 score of 0.88 for the Hate Speech-Offensive task. On the RUHSOLD corpus, the same model achieved an accuracy of 0.95 and an F1 score of 0.94 for the Coarse-grained task, alongside an accuracy of 0.87 and an F1 score of 0.84 for the Fine-grained task. These results demonstrate the effectiveness of our hybrid approach for Roman Urdu hate speech detection.

Producción Científica

Waqar Ashiq mail , Samra Kanwal mail , Adnan Rafique mail , Muhammad Waqas mail , Tahir Khurshaid mail , Elizabeth Caro Montero mail elizabeth.caro@uneatlantico.es, Alicia Bustamante Alonso mail alicia.bustamante@uneatlantico.es, Imran Ashraf mail ,

Ashiq

<a class="ep_document_link" href="/14584/1/s41598-024-73664-6.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Performance of the 4C and SEIMC scoring systems in predicting mortality from onset to current COVID-19 pandemic in emergency departments

The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.

Producción Científica

Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,

de Santos Castro