La percepción de los docentes sobre el uso de las TIC. Propuestas de material didáctico para su implementación en el aula.
Tesis
Materias > Educación
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Cerrado
Español
La presente investigación se basa en la percepción que poseen los docentes acerca del uso del TIC, y a partir de la visión que demuestren se les propondrá materiales didácticos basados en recursos de las TIC.El termino TIC en términos generales refiere a todas las tecnologías de información y comunicación cuya base está centrada principalmente en la informática, microelectrónica y las telecomunicaciones, las cuales se han potenciado y han abierto un universo de posibilidades a la hora de trasmitir información. Desde la mirada pedagógica las TIC se constituyen en un medio las para la transformación pedagógica del ejercicio profesional.En este sentido, se parte desde el planteamiento del problema a investigar “La opinión que manifiestan los docentes de la Unidad Educativa San Jacinto de Colimes sobre el uso de las Tic en el aula, si están de acuerdo en dejar atrás las metodologías tradicionales para dar paso a recursos innovadores favoreciendo todo el proceso de enseñanza-aprendizaje”. Seguidamente se plantea como objetivo general, Diseñar un Plan Estratégico para la implementación de acciones de innovación tecnológica e integración de las TIC en la Institución Unidad Educativa “San Jacinto”, Cantón Colimes, provincia Guayas. En tanto, desde una perspectiva teórica la didáctica tiene como objeto especifico el estudio de las acciones que el docente realiza dentro del aula, es decir las técnicas de enseñanza que resulten optimas en beneficio de los actores del proceso de enseñanza- aprendizaje (Camillioni, 2007). En la actualidad y en un contexto dominado por las tecnologías de la comunicación e información (TIC) es indispensable trabajar con modelos pedagógicos innovadores, dado que los modelos de aprendizajes tradicionales no darían respuestas a las formas en que los estudiantes leen e interpretan el mundo. Para poder asumir el que hacer docente de acuerdo a las nuevas exigencias pedagógicas, se requiere una concreción en cada uno de los componentes del proceso enseñanza-aprendizaje (contenidos, objetivos, métodos, evaluación y medios de enseñanza) con el uso creciente e innovador de las TIC, que garantice un sistema didáctico acorde a las nuevas exigencias de perfeccionamiento de la educación superior- universitaria (Rivero, Padrón & Izaguirre, 2012).La investigación se enmarca en una investigación de diseño cualitativo analítico-descriptivo, a través del cual se intenta examinar y describir la relación de las TIC con el docente, la implementación de las Tecnologías de la información y comunicación (TIC) como estrategia de enseñanzas.Finalmente podemos destacar que las Tecnologías de la Información y Comunicación representan una alternativa viable para el desarrollo de experiencias significativas de aprendizaje. En el ámbito educativo las TIC permiten el desarrollo de nuevos materiales didácticos de carácter electrónico con diferentes soportes y genera nuevos escenarios de aprendizajes.
metadata
Coloma Chong, Johanna Katherine
mail
joka27_@hotmail.com
(2022)
La percepción de los docentes sobre el uso de las TIC. Propuestas de material didáctico para su implementación en el aula.
Masters thesis, SIN ESPECIFICAR.
Resumen
La presente investigación se basa en la percepción que poseen los docentes acerca del uso del TIC, y a partir de la visión que demuestren se les propondrá materiales didácticos basados en recursos de las TIC.El termino TIC en términos generales refiere a todas las tecnologías de información y comunicación cuya base está centrada principalmente en la informática, microelectrónica y las telecomunicaciones, las cuales se han potenciado y han abierto un universo de posibilidades a la hora de trasmitir información. Desde la mirada pedagógica las TIC se constituyen en un medio las para la transformación pedagógica del ejercicio profesional.En este sentido, se parte desde el planteamiento del problema a investigar “La opinión que manifiestan los docentes de la Unidad Educativa San Jacinto de Colimes sobre el uso de las Tic en el aula, si están de acuerdo en dejar atrás las metodologías tradicionales para dar paso a recursos innovadores favoreciendo todo el proceso de enseñanza-aprendizaje”. Seguidamente se plantea como objetivo general, Diseñar un Plan Estratégico para la implementación de acciones de innovación tecnológica e integración de las TIC en la Institución Unidad Educativa “San Jacinto”, Cantón Colimes, provincia Guayas. En tanto, desde una perspectiva teórica la didáctica tiene como objeto especifico el estudio de las acciones que el docente realiza dentro del aula, es decir las técnicas de enseñanza que resulten optimas en beneficio de los actores del proceso de enseñanza- aprendizaje (Camillioni, 2007). En la actualidad y en un contexto dominado por las tecnologías de la comunicación e información (TIC) es indispensable trabajar con modelos pedagógicos innovadores, dado que los modelos de aprendizajes tradicionales no darían respuestas a las formas en que los estudiantes leen e interpretan el mundo. Para poder asumir el que hacer docente de acuerdo a las nuevas exigencias pedagógicas, se requiere una concreción en cada uno de los componentes del proceso enseñanza-aprendizaje (contenidos, objetivos, métodos, evaluación y medios de enseñanza) con el uso creciente e innovador de las TIC, que garantice un sistema didáctico acorde a las nuevas exigencias de perfeccionamiento de la educación superior- universitaria (Rivero, Padrón & Izaguirre, 2012).La investigación se enmarca en una investigación de diseño cualitativo analítico-descriptivo, a través del cual se intenta examinar y describir la relación de las TIC con el docente, la implementación de las Tecnologías de la información y comunicación (TIC) como estrategia de enseñanzas.Finalmente podemos destacar que las Tecnologías de la Información y Comunicación representan una alternativa viable para el desarrollo de experiencias significativas de aprendizaje. En el ámbito educativo las TIC permiten el desarrollo de nuevos materiales didácticos de carácter electrónico con diferentes soportes y genera nuevos escenarios de aprendizajes.
| Tipo de Documento: | Tesis (Masters) |
|---|---|
| Palabras Clave: | TICS, Enseñanza, Aprendizaje, Docente |
| Clasificación temática: | Materias > Educación |
| Divisiones: | Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster |
| Depositado: | 15 Abr 2024 23:30 |
| Ultima Modificación: | 15 Abr 2024 23:30 |
| URI: | https://repositorio.unib.org/id/eprint/2767 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a href="/17880/1/nutrients-17-03613.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background/Objectives: Estimating energy and macronutrients from food images is clinically relevant yet challenging, and rigorous evaluation requires transparent accuracy metrics with uncertainty and clear acknowledgement of reference data limitations across heterogeneous sources. This study assessed ChatGPT-5, a general-purpose vision-language model, across four scenarios differing in the amount and type of contextual information provided, using a composite dataset to quantify accuracy for calories and macronutrients. Methods: A total of 195 dishes were evaluated, sourced from Allrecipes.com, the SNAPMe dataset, and Home-prepared, weighed meals. Each dish was evaluated under Case 1 (image only), Case 2 (image plus standardized non-visual descriptors), Case 3 (image plus ingredient lists with amounts), and Case 4 (replicates Case 3 but excluding the image). The primary endpoint was kcal Mean Absolute Error (MAE); secondary endpoints included Median Absolute Error (MedAE) and Root Mean Square Error (RMSE) for kcal and macronutrients (protein, carbohydrates, and lipids), all reported with 95% Confidence Intervals (CIs) via dish-level bootstrap resampling and accompanied by absolute differences (Δ) between scenarios. Inference settings were standardized to support reproducibility and variance estimation. Source stratified analyses and quartile summaries were conducted to examine heterogeneity by curation level and nutrient ranges, with additional robustness checks for error complexity relationships. Results and Discussion: Accuracy improved from Case 1 to Case 2 and further in Case 3 for energy and all macronutrients when summarized by MAE, MedAE, and RMSE with 95% CIs, with absolute reductions (Δ) indicating material gains as contextual information increased. In contrast to Case 3, estimation accuracy declined in Case 4, underscoring the contribution of visual cues. Gains were largest in the Home-prepared dietitian-weighed subset and smaller yet consistent for Allrecipes.com and SNAPMe, reflecting differences in reference curation and measurement fidelity across sources. Scenario-level trends were concordant across sources, and stratified and quartile analyses showed coherent patterns of decreasing absolute errors with the provision of structured non-visual information and detailed ingredient data. Conclusions: ChatGPT-5 can deliver practically useful calorie and macronutrient estimates from food images, particularly when augmented with standardized nonvisual descriptors and detailed ingredients, as evidenced by reductions in MAE, MedAE, and RMSE with 95% CIs across scenarios. The decline in accuracy observed when the image was omitted, despite providing detailed ingredient information, indicates that visual cues contribute meaningfully to estimation performance and that improvements are not solely attributable to arithmetic from ingredient lists. Finally, to promote generalizability, it is recommended that future studies include repeated evaluations across diverse datasets, ensure public availability of prompts and outputs, and incorporate systematic comparisons with non-artificial-intelligence baselines.
Marcela Rodríguez- Jiménez mail , Gustavo Daniel Martín-del-Campo-Becerra mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Jorge Crespo-Álvarez mail jorge.crespo@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,
Rodríguez- Jiménez
<a class="ep_document_link" href="/17885/1/s41598-025-26052-7.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Mango is one of the most beloved fruits and plays an indispensable role in the agricultural economies of many tropical countries like Pakistan, India, and other Southeast Asian countries. Similar to other fruits, mango cultivation is also threatened by various diseases, including Anthracnose and Red Rust. Although farmers try to mitigate such situations on time, early and accurate detection of mango diseases remains challenging due to multiple factors, such as limited understanding of disease diversity, similarity in symptoms, and frequent misclassification. To avoid such instances, this study proposes a multimodal deep learning framework that leverages both leaf and fruit images to improve classification performance and generalization. Individual CNN-based pre-trained models, including ResNet-50, MobileNetV2, EfficientNet-B0, and ConvNeXt, were trained separately on curated datasets of mango leaf and fruit diseases. A novel Modality Attention Fusion (MAF) mechanism was introduced to dynamically weight and combine predictions from both modalities based on their discriminative strength, as some diseases are more prominent on leaves than on fruits, and vice versa. To address overfitting and improve generalization, a class-aware augmentation pipeline was integrated, which performs augmentation according to the specific characteristics of each class. The proposed attention-based fusion strategy significantly outperformed individual models and static fusion approaches, achieving a test accuracy of 99.08%, an F1 score of 99.03%, and a perfect ROC-AUC of 99.96% using EfficientNet-B0 as the base. To evaluate the model’s real-world applicability, an interactive web application was developed using the Django framework and evaluated through out-of-distribution (OOD) testing on diverse mango samples collected from public sources. These findings underline the importance of combining visual cues from multiple organs of plants and adapting model attention to contextual features for real-world agricultural diagnostics.
Muhammad Mohsin mail , Muhammad Shadab Alam Hashmi mail , Irene Delgado Noya mail irene.delgado@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Nagwan Abdel Samee mail , Imran Ashraf mail ,
Mohsin
en
close
Food security is a universal need worldwide. This study explored the relationship between food security and adherence to the Mediterranean diet in the context of the DELICIOUS project. A survey involving 2,011 parents of children and adolescents aged 6–17 years was conducted. Adherence to the Mediterranean diet was assessed through the KIDMED score. Information regarding the ease of accessing Mediterranean foods, economic allowance, employment and residence was collected. Logistic regressions analyses were performed to test the associations. Individuals living in rural areas and reporting difficulty in obtaining all studied foods were less likely to follow the Mediterranean diet. Higher adherence was associated with a household monthly income higher than €4000. No associations with family status and no differences across countries were found. The progressive shift away from the Mediterranean diet may depend not only on cultural preferences for unhealthier, industrial alternatives but also on family budgets and food accessibility.
Francesca Scazzina mail , Alice Rosi mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Carlos Poveda-Loor mail , Osama Abdelkarim mail , Mohamed Aly mail , Evelyn Frias-Toral mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Lorenzo Monasta mail , Nadia Paladino mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,
Scazzina
<a href="/17858/1/s41598-025-18979-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Detection and classification of brain tumor using a hybrid learning model in CT scan images
Accurate diagnosis of brain tumors is critical in understanding the prognosis in terms of the type, growth rate, location, removal strategy, and overall well-being of the patients. Among different modalities used for the detection and classification of brain tumors, a computed tomography (CT) scan is often performed as an early-stage procedure for minor symptoms like headaches. Automated procedures based on artificial intelligence (AI) and machine learning (ML) methods are used to detect and classify brain tumors in Computed Tomography (CT) scan images. However, the key challenges in achieving the desired outcome are associated with the model’s complexity and generalization. To address these issues, we propose a hybrid model that extracts features from CT images using classical machine learning. Additionally, although MRI is a common modality for brain tumor diagnosis, its high cost and longer acquisition time make CT scans a more practical choice for early-stage screening and widespread clinical use. The proposed framework has different stages, including image acquisition, pre-processing, feature extraction, feature selection, and classification. The hybrid architecture combines features from ResNet50, AlexNet, LBP, HOG, and median intensity, classified using a multilayer perceptron. The selection of the relevant features in our proposed hybrid model was extracted using the SelectKBest algorithm. Thus, it optimizes the proposed model performance. In addition, the proposed model incorporates data augmentation to handle the imbalanced datasets. We employed a scoring function to extract the features. The Classification is ensured using a multilayer perceptron neural network (MLP). Unlike most existing hybrid approaches, which primarily target MRI-based brain tumor classification, our method is specifically designed for CT scan images, addressing their unique noise patterns and lower soft-tissue contrast. To the best of our knowledge, this is the first work to integrate LBP, HOG, median intensity, and deep features from both ResNet50 and AlexNet in a structured fusion pipeline for CT brain tumor classification. The proposed hybrid model is tested on data from numerous sources and achieved an accuracy of 94.82%, precision of 94.52%, specificity of 98.35%, and sensitivity of 94.76% compared to state-of-the-art models. While MRI-based models often report higher accuracies, the proposed model achieves 94.82% on CT scans, within 3–4% of leading MRI-based approaches, demonstrating strong generalization despite the modality difference. The proposed hybrid model, combining hand-crafted and deep learning features, effectively improves brain tumor detection and classification accuracy in CT scans. It has the potential for clinical application, aiding in early and accurate diagnosis. Unlike MRI, which is often time-intensive and costly, CT scans are more accessible and faster to acquire, making them suitable for early-stage screening and emergency diagnostics. This reinforces the practical and clinical value of the proposed model in real-world healthcare settings.
Roja Ghasemi mail , Naveed Islam mail , Samin Bayat mail , Muhammad Shabir mail , Shahid Rahman mail , Farhan Amin mail , Isabel de la Torre mail , Ángel Gabriel Kuc Castilla mail angel.kuc@uneatlantico.es, Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx,
Ghasemi
<a href="/17862/1/sensors-25-06419.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Edge-Based Autonomous Fire and Smoke Detection Using MobileNetV2
Forest fires pose significant threats to ecosystems, human life, and the global climate, necessitating rapid and reliable detection systems. Traditional fire detection approaches, including sensor networks, satellite monitoring, and centralized image analysis, often suffer from delayed response, high false positives, and limited deployment in remote areas. Recent deep learning-based methods offer high classification accuracy but are typically computationally intensive and unsuitable for low-power, real-time edge devices. This study presents an autonomous, edge-based forest fire and smoke detection system using a lightweight MobileNetV2 convolutional neural network. The model is trained on a balanced dataset of fire, smoke, and non-fire images and optimized for deployment on resource-constrained edge devices. The system performs near real-time inference, achieving a test accuracy of 97.98% with an average end-to-end prediction latency of 0.77 s per frame (approximately 1.3 FPS) on the Raspberry Pi 5 edge device. Predictions include the class label, confidence score, and timestamp, all generated locally without reliance on cloud connectivity, thereby enhancing security and robustness against potential cyber threats. Experimental results demonstrate that the proposed solution maintains high predictive performance comparable to state-of-the-art methods while providing efficient, offline operation suitable for real-world environmental monitoring and early wildfire mitigation. This approach enables cost-effective, scalable deployment in remote forest regions, combining accuracy, speed, and autonomous edge processing for timely fire and smoke detection.
Dilshod Sharobiddinov mail , Hafeez Ur Rehman Siddiqui mail , Adil Ali Saleem mail , Gerardo Méndez Mezquita mail , Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx, Isabel de la Torre Díez mail ,
Sharobiddinov
