Diseño de un programa de capacitación docente en estrategias didácticas y técnicas de aprendizaje colaborativo (TAC) como herramienta de perfeccionamiento docente en beneficio de la comunidad educativa Frau Klier.
Tesis
Materias > Educación
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Cerrado
Español
El contexto mundial y la docencia en general, han propuesto nuevos retos en el año 2020, el efecto pandemia ha evidenciado falencias puntuales sobre las estrategias de los docentes para poder llegar al estudiantado de una manera asertiva, es por esta razón que como herramienta de perfeccionamiento y desarrollo continuo como profesionales y sobre todo como seres humanos que brinden calidad y calidez en la Unidad Educativa Frau Klier se ha propuesto en este proyecto, diseñar un programa de capacitación sobre estrategias y técnicas de aprendizaje colaborativo para la mejora del desempeño de los docentes de la Institución Educativa Frau Klier del distrito La Delicia , cantón Quito, provincia Pichincha, país Ecuador .En este sentido se tomaron consideraciones que brinden un apoyo más especializado a los estudiantes, aplicando metodologías que se ajusten a sus necesidades priorizando las destrezas en lugar de los contenidos, principalmente innovando en las técnicas de aprendizaje para así lograr conseguir desde los docentes la tan anhelada calidad educativa. El programa Maestros 4.0 será el resultado de este estudio que abordará desde su núcleo el aprendizaje constructivista social , aprendizaje colaborativo y Técnicas de aprendizaje colaborativo; donde el tipo de investigación por su naturaleza y contexto limitado dentro de la Unidad Educativa Frau Klier del distrito La Delicia , cantón Quito , provincia Pichincha ,país Ecuador, donde el estudio será deductivo descriptivo-exploratorio teniendo un enfoque cualitativo , que por las aspiraciones, y sobre todo el objetivo general de la metodología planteada será de Investigación acción participativa (IAP),para mejorar las prácticas dentro de la institución. Utilizando instrumentos como Focus Group, encuestas y entrevistas. Los resultados evidencian la utilidad de las técnicas y estrategias en el proceso de aprendizaje colaborativo que muestran la necesidad institucional de mejorar profesionalmente a su claustro docente. Por lo tanto, se presenta una propuesta de innovación que articula dimensiones tecnológicas y presenciales del proceso enseñanza-aprendizaje, es así que, se manifiesta la relevancia de planificar acertadamente las metodologías, estrategias y técnicas para garantizar el aprendizaje colaborativo y comprender que los elementos organizativos, pedagógicos y tecnológicos deben converger con el único objetivo de transformar la educación.
metadata
Chavez Montero, Gabriel Enrique
mail
cefk_gabrielchavezm@hotmail.com
(2022)
Diseño de un programa de capacitación docente en estrategias didácticas y técnicas de aprendizaje colaborativo (TAC) como herramienta de perfeccionamiento docente en beneficio de la comunidad educativa Frau Klier.
Masters thesis, SIN ESPECIFICAR.
Resumen
El contexto mundial y la docencia en general, han propuesto nuevos retos en el año 2020, el efecto pandemia ha evidenciado falencias puntuales sobre las estrategias de los docentes para poder llegar al estudiantado de una manera asertiva, es por esta razón que como herramienta de perfeccionamiento y desarrollo continuo como profesionales y sobre todo como seres humanos que brinden calidad y calidez en la Unidad Educativa Frau Klier se ha propuesto en este proyecto, diseñar un programa de capacitación sobre estrategias y técnicas de aprendizaje colaborativo para la mejora del desempeño de los docentes de la Institución Educativa Frau Klier del distrito La Delicia , cantón Quito, provincia Pichincha, país Ecuador .En este sentido se tomaron consideraciones que brinden un apoyo más especializado a los estudiantes, aplicando metodologías que se ajusten a sus necesidades priorizando las destrezas en lugar de los contenidos, principalmente innovando en las técnicas de aprendizaje para así lograr conseguir desde los docentes la tan anhelada calidad educativa. El programa Maestros 4.0 será el resultado de este estudio que abordará desde su núcleo el aprendizaje constructivista social , aprendizaje colaborativo y Técnicas de aprendizaje colaborativo; donde el tipo de investigación por su naturaleza y contexto limitado dentro de la Unidad Educativa Frau Klier del distrito La Delicia , cantón Quito , provincia Pichincha ,país Ecuador, donde el estudio será deductivo descriptivo-exploratorio teniendo un enfoque cualitativo , que por las aspiraciones, y sobre todo el objetivo general de la metodología planteada será de Investigación acción participativa (IAP),para mejorar las prácticas dentro de la institución. Utilizando instrumentos como Focus Group, encuestas y entrevistas. Los resultados evidencian la utilidad de las técnicas y estrategias en el proceso de aprendizaje colaborativo que muestran la necesidad institucional de mejorar profesionalmente a su claustro docente. Por lo tanto, se presenta una propuesta de innovación que articula dimensiones tecnológicas y presenciales del proceso enseñanza-aprendizaje, es así que, se manifiesta la relevancia de planificar acertadamente las metodologías, estrategias y técnicas para garantizar el aprendizaje colaborativo y comprender que los elementos organizativos, pedagógicos y tecnológicos deben converger con el único objetivo de transformar la educación.
Tipo de Documento: | Tesis (Masters) |
---|---|
Palabras Clave: | Técnicas de aprendizaje colaborativo (TAC), investigación acción participativa (IAP), metodologías de aprendizaje, calidad educativa. |
Clasificación temática: | Materias > Educación |
Divisiones: | Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster |
Depositado: | 20 Oct 2023 23:30 |
Ultima Modificación: | 20 Oct 2023 23:30 |
URI: | https://repositorio.unib.org/id/eprint/904 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a class="ep_document_link" href="/17849/1/1-s2.0-S2590005625001043-main.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence
Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.
Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,
Saleem
<a class="ep_document_link" href="/17844/1/frai-1-1572645.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A systematic review of deep learning methods for community detection in social networks
Introduction: The rapid expansion of generated data through social networks has introduced significant challenges, which underscores the need for advanced methods to analyze and interpret these complex systems. Deep learning has emerged as an effective approach, offering robust capabilities to process large datasets, and uncover intricate relationships and patterns. Methods: In this systematic literature review, we explore research conducted over the past decade, focusing on the use of deep learning techniques for community detection in social networks. A total of 19 studies were carefully selected from reputable databases, including the ACM Library, Springer Link, Scopus, Science Direct, and IEEE Xplore. This review investigates the employed methodologies, evaluates their effectiveness, and discusses the challenges identified in these works. Results: Our review shows that models like graph neural networks (GNNs), autoencoders, and convolutional neural networks (CNNs) are some of the most commonly used approaches for community detection. It also examines the variety of social networks, datasets, evaluation metrics, and employed frameworks in these studies. Discussion: However, the analysis highlights several challenges, such as scalability, understanding how the models work (interpretability), and the need for solutions that can adapt to different types of networks. These issues stand out as important areas that need further attention and deeper research. This review provides meaningful insights for researchers working in social network analysis. It offers a detailed summary of recent developments, showcases the most impactful deep learning methods, and identifies key challenges that remain to be explored.
Mohamed El-Moussaoui mail , Mohamed Hanine mail , Ali Kartit mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Isabel de la Torre Díez mail ,
El-Moussaoui
<a href="/17853/1/fmed-12-1600855.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Transformer-based ECG classification for early detection of cardiac arrhythmias
Electrocardiogram (ECG) classification plays a critical role in early detection and trocardiogram (ECG) classification plays a critical role in early detection and monitoring cardiovascular diseases. This study presents a Transformer-based deep learning framework for automated ECG classification, integrating advanced preprocessing, feature selection, and dimensionality reduction techniques to improve model performance. The pipeline begins with signal preprocessing, where raw ECG data are denoised, normalized, and relabeled for compatibility with attention-based architectures. Principal component analysis (PCA), correlation analysis, and feature engineering is applied to retain the most informative features. To assess the discriminative quality of the selected features, t-distributed stochastic neighbor embedding (t-SNE) is used for visualization, revealing clear class separability in the transformed feature space. The refined dataset is then input to a Transformer- based model trained with optimized loss functions, regularization strategies, and hyperparameter tuning. The proposed model demonstrates strong performance on the MIT-BIH benchmark dataset, showing results consistent with or exceeding prior studies. However, due to differences in datasets and evaluation protocols, these comparisons are indicative rather than conclusive. The model effectively classifies ECG signals into categories such as Normal, atrial premature contraction (APC), ventricular premature contraction (VPC), and Fusion beats. These results underscore the effectiveness of Transformer-based models in biomedical signal processing and suggest potential for scalable, automated ECG diagnostics. However, deployment in real-time or resource-constrained settings will require further optimization and validation.
Sunnia Ikram mail , Amna Ikram mail , Harvinder Singh mail , Malik Daler Ali Awan mail , Sajid Naveed mail , Isabel De la Torre Díez mail , Henry Fabian Gongora mail henry.gongora@uneatlantico.es, Thania Chio Montero mail ,
Ikram
<a href="/17831/1/s43856-025-01020-4.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Association between blood cortisol levels and numerical rating scale in prehospital pain assessment
Background Nowadays, there is no correlation between levels of cortisol and pain in the prehospital setting. The aim of this work was to determine the ability of prehospital cortisol levels to correlate to pain. Cortisol levels were compared with those of the numerical rating scale (NRS). Methods This is a prospective observational study looking at adult patients with acute disease managed by Emergency Medical Services (EMS) and transferred to the emergency department of two tertiary care hospitals. Epidemiological variables, vital signs, and prehospital blood analysis data were collected. A total of 1516 patients were included, the median age was 67 years (IQR: 51–79; range: 18–103) with 42.7% of females. The primary outcome was pain evaluation by NRS, which was categorized as pain-free (0 points), mild (1–3), moderate (4–6), or severe (≥7). Analysis of variance, correlation, and classification capacity in the form area under the curve of the receiver operating characteristic (AUC) curve were used to prospectively evaluate the association of cortisol with NRS. Results The median NRS and cortisol level are 1 point (IQR: 0–4) and 282 nmol/L (IQR: 143–433). There are 584 pain-free patients (38.5%), 525 mild (34.6%), 244 moderate (16.1%), and 163 severe pain (10.8%). Cortisol levels in each NRS category result in p < 0.001. The correlation coefficient between the cortisol level and NRS is 0.87 (p < 0.001). The AUC of cortisol to classify patients into each NRS category is 0.882 (95% CI: 0.853–0.910), 0.496 (95% CI: 0.446–0.545), 0.837 (95% CI: 0.803–0.872), and 0.981 (95% CI: 0.970–0.991) for the pain-free, mild, moderate, and severe categories, respectively. Conclusions Cortisol levels show similar pain evaluation as NRS, with high-correlation for NRS pain categories, except for mild-pain. Therefore, cortisol evaluation via the EMS could provide information regarding pain status.
Raúl López-Izquierdo mail , Elisa A. Ingelmo-Astorga mail , Carlos del Pozo Vegas mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Ancor Sanz-García mail , Francisco Martín-Rodríguez mail ,
López-Izquierdo
<a href="/17838/1/s41598-025-02008-9.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Botnet detection in internet of things using stacked ensemble learning model
Botnets are used for malicious activities such as cyber-attacks, spamming, and data theft and have become a significant threat to cyber security. Despite existing approaches for cyber attack detection, botnets prove to be a particularly difficult problem that calls for more advanced detection methods. In this research, a stacking classifier is proposed based on K-nearest neighbor, support vector machine, decision tree, random forest, and multilayer perceptron, called KSDRM, for botnet detection. Logistic regression acts as the meta-learner to combine the predictions from the base classifiers into the final prediction with the aim of increasing the overall accuracy and predictive performance of the ensemble. The UNSW-NB15 dataset is used to train machine learning models and evaluate their effectiveness in detecting cyber-attacks on IoT networks. The categorical features are transformed into numerical values using label encoding. Machine learning techniques are adopted to recognize botnet attacks to enhance cyber security measures. The KSDRM model successfully captures the complex patterns and traits of botnet attacks and obtains 99.99% training accuracy. The KSDRM model also performs well during testing by achieving an accuracy of 97.94%. Based on 3, 5, 7, and 10 folds, the k-fold cross-validation results show that the proposed method’s average accuracy is 99.89%, 99.88%, 99.89%, and 99.87%, respectively. Further, the demonstration of experiments and results shows the KSDRM model is an effective method to identify botnet-based cyber attacks. The findings of this study have the potential to improve cyber security controls and strengthen networks against changing threats.
Mudasir Ali mail , Muhammad Faheem Mushtaq mail , Urooj Akram mail , Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Hanen Karamti mail , Imran Ashraf mail ,
Ali