Principales factores de riesgo a los que están expuestos los colaboradores del área de producción de una empresa industrial

Tesis Materias > Biomedicina
Materias > Psicología
Materias > Ciencias Sociales
Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Cerrado Español Los colaboradores del área de producción de una empresa industrial están expuestos a múltiples factores de riesgo que pueden perjudicar su productividad. Es por esto que se hace necesario determinar los principales factores de riesgo en el área de producción de la empresa mediante un análisis de las condiciones laborales que permita mejorar la productividad y la eficiencia de los procesos. Las empresas industriales están expuestas a múltiples riesgos que pueden representan pérdidas significativas en términos económicos, además de exponer a los trabajadores a condiciones peligrosas para su integridad física y mental. Se hace necesario diseñar un ambiente laboral que permita incrementar la eficiencia de los procesos y garantizar la integridad de cada uno de los involucrados en la gestión de los mismos. Las actividades de seguridad e higiene son elementos que se necesitan para asegurar la disponibilidad de las habilidades y actitudes de los colaboradores. Actualmente, la salud y seguridad de los empleados constituye una de las principales actividades en la prevención adecuada de la fuerza laboral. Por lo tanto, métodos adecuados de trabajo, donde estén claramente definidas, las condiciones de trabajo y una estrategia para la de prevención de riesgos laborales de acuerdo a sus necesidades. La presente investigación tiene un carácter descriptivo. El tipo de análisis que se utilizará es la acción participativa en la investigación. Por otra parte, la población a estudiar corresponde a los colaboradores de la empresa industrial que se eligió para el proyecto. Esta población es de aproximadamente 120 empleados en total. De aquí se tomará la muestra correspondiente. Dicha muestra se obtendrá mediante un muestreo probabilístico. Una vez elegida, se procederá a recolectar los datos y a detallar los resultados obtenidos. De tal manera que se puedan proponer acciones de mejora para los procesos de la empresa. metadata Areiza Roman, Yamile Tatiana mail tatayami23@hotmail.com (2022) Principales factores de riesgo a los que están expuestos los colaboradores del área de producción de una empresa industrial. Masters thesis, Universidad Europea del Atlántico.

Texto completo no disponible.

Resumen

Los colaboradores del área de producción de una empresa industrial están expuestos a múltiples factores de riesgo que pueden perjudicar su productividad. Es por esto que se hace necesario determinar los principales factores de riesgo en el área de producción de la empresa mediante un análisis de las condiciones laborales que permita mejorar la productividad y la eficiencia de los procesos. Las empresas industriales están expuestas a múltiples riesgos que pueden representan pérdidas significativas en términos económicos, además de exponer a los trabajadores a condiciones peligrosas para su integridad física y mental. Se hace necesario diseñar un ambiente laboral que permita incrementar la eficiencia de los procesos y garantizar la integridad de cada uno de los involucrados en la gestión de los mismos. Las actividades de seguridad e higiene son elementos que se necesitan para asegurar la disponibilidad de las habilidades y actitudes de los colaboradores. Actualmente, la salud y seguridad de los empleados constituye una de las principales actividades en la prevención adecuada de la fuerza laboral. Por lo tanto, métodos adecuados de trabajo, donde estén claramente definidas, las condiciones de trabajo y una estrategia para la de prevención de riesgos laborales de acuerdo a sus necesidades. La presente investigación tiene un carácter descriptivo. El tipo de análisis que se utilizará es la acción participativa en la investigación. Por otra parte, la población a estudiar corresponde a los colaboradores de la empresa industrial que se eligió para el proyecto. Esta población es de aproximadamente 120 empleados en total. De aquí se tomará la muestra correspondiente. Dicha muestra se obtendrá mediante un muestreo probabilístico. Una vez elegida, se procederá a recolectar los datos y a detallar los resultados obtenidos. De tal manera que se puedan proponer acciones de mejora para los procesos de la empresa.

Tipo de Documento: Tesis (Masters)
Palabras Clave: Factor de riesgo, seguridad industrial, ambiente laboral, medidas de protección, prevención.
Clasificación temática: Materias > Biomedicina
Materias > Psicología
Materias > Ciencias Sociales
Divisiones: Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Depositado: 31 Oct 2023 23:30
Ultima Modificación: 31 Oct 2023 23:30
URI: https://repositorio.unib.org/id/eprint/1472

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a class="ep_document_link" href="/15625/1/s41598-024-74127-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Smart agriculture: utilizing machine learning and deep learning for drought stress identification in crops

Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the physiological responses of plants mostly crops to drought stress have been revealed through the use of complex algorithms like gradient boosting, support vector machines (SVM), recurrent neural network (RNN), and long short-term memory (LSTM), combined with a thorough examination of the TYRKC and RBR-E3 domains in stress-associated signaling proteins across a range of crop species. Modern resources were used in this study, including the UniProt protein database for crop physiochemical properties associated with specific signaling domains and the SMART database for signaling protein domains. These insights were then applied to deep learning and machine learning techniques after careful data processing. The rigorous metric evaluations and ablation analysis that typified the study’s approach highlighted the algorithms’ effectiveness and dependability in recognizing and classifying stress events. Notably, the accuracy of SVM was 82%, while gradient boosting and RNN showed 96%, and 94%, respectively and LSTM obtained an astounding 97% accuracy. The study observed these successes but also highlights the ongoing obstacles to AI adoption in agriculture, emphasizing the need for creative thinking and interdisciplinary cooperation. In addition to its scholarly value, the collected data has significant implications for improving resource efficiency, directing precision agricultural methods, and supporting global food security programs. Notably, the gradient boosting and LSTM algorithm outperformed the others with an exceptional accuracy of 96% and 97%, demonstrating their potential for accurate stress categorization. This work highlights the revolutionary potential of AI to completely disrupt the agricultural industry while simultaneously advancing our understanding of plant stress responses.

Producción Científica

Tariq Ali mail , Saif Ur Rehman mail , Shamshair Ali mail , Khalid Mahmood mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Tahir Khurshaid mail , Imran Ashraf mail ,

Ali

<a href="/15979/1/nutrients-17-00026.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Lifestyle Factors Associated with Children’s and Adolescents’ Adherence to the Mediterranean Diet Living in Mediterranean Countries: The DELICIOUS Project

Background/Objectives. Traditional dietary patterns are being abandoned in Mediterranean countries, especially among younger generations. This study aimed to investigate the potential lifestyle determinants that can increase adherence to the Mediterranean diet in children and adolescents. Methods. This study is a cross-sectional analysis of data from five Mediterranean countries (Italy, Spain, Portugal, Egypt, and Lebanon) within the context of the EU-funded project DELICIOUS (UnDErstanding consumer food choices & promotion of healthy and sustainable Mediterranean Diet and LIfestyle in Children and adolescents through behavIOUral change actionS). This study comprised information on 2011 children and adolescents aged 6–17 years old collected during 2023. The main background characteristics of both children and parents, including age, sex, education, and family situation, were collected. Children’s eating (i.e., breakfast, place of eating, etc.) and lifestyle habits (i.e., physical activity level, sleep, and screen time) were also investigated. The level of adherence to the Mediterranean diet was assessed using the KIDMED index. Logistic regression analyses were performed to test for likelihood of higher adherence to the Mediterranean diet. Results. Major determinants of higher adherence to the Mediterranean diet were younger age, higher physical activity level, adequate sleep duration, and, among dietary habits, having breakfast and eating with family members and at school. Parents’ younger age and higher education were also determinants of higher adherence. Multivariate adjusted analyses showed that an overall healthier lifestyle and parents’ education were the factors independently associated with higher adherence to the Mediterranean diet. Conclusions. Higher adherence to the Mediterranean diet in children and adolescents living in the Mediterranean area is part of an overall healthy lifestyle possibly depending on parents’ cultural background.

Producción Científica

Alice Rosi mail , Francesca Scazzina mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Ludwig Álvarez-Córdova mail , Osama Abdelkarim mail , Achraf Ammar mail , Mohamed Aly mail , Evelyn Frias-Toral mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Carmen Lilí Rodríguez Velasco mail carmen.rodriguez@uneatlantico.es, Julién Brito Ballester mail julien.brito@uneatlantico.es, Lorenzo Monasta mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,

Rosi

<a href="/15198/1/nutrients-16-03859.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Carotenoids Intake and Cardiovascular Prevention: A Systematic Review

Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.

Producción Científica

Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,

Sumalla Cano

<a href="/15441/1/journal.pone.0313835.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

StackIL10: A stacking ensemble model for the improved prediction of IL-10 inducing peptides

Interleukin-10, a highly effective cytokine recognized for its anti-inflammatory properties, plays a critical role in the immune system. In addition to its well-documented capacity to mitigate inflammation, IL-10 can unexpectedly demonstrate pro-inflammatory characteristics under specific circumstances. The presence of both aspects emphasizes the vital need to identify the IL-10-induced peptide. To mitigate the drawbacks of manual identification, which include its high cost, this study introduces StackIL10, an ensemble learning model based on stacking, to identify IL-10-inducing peptides in a precise and efficient manner. Ten Amino-acid-composition-based Feature Extraction approaches are considered. The StackIL10, stacking ensemble, the model with five optimized Machine Learning Algorithm (specifically LGBM, RF, SVM, Decision Tree, KNN) as the base learners and a Logistic Regression as the meta learner was constructed, and the identification rate reached 91.7%, MCC of 0.833 with 0.9078 Specificity. Experiments were conducted to examine the impact of various enhancement techniques on the correctness of IL-10 Prediction. These experiments included comparisons between single models and various combinations of stacking-based ensemble models. It was demonstrated that the model proposed in this study was more effective than singular models and produced satisfactory results, thereby improving the identification of peptides that induce IL-10.

Producción Científica

Salman Sadullah Usmani mail , Izaz Ahmmed Tuhin mail , Md. Rajib Mia mail , Md. Monirul Islam mail , Imran Mahmud mail , Carlos Eduardo Uc Ríos mail carlos.uc@unini.edu.mx, Henry Fabian Gongora mail henry.gongora@uneatlantico.es, Imran Ashraf mail , Md. Abdus Samad mail ,

Usmani