Items where Division is "Fundación Universitaria Internacional de Colombia > Research > Scientific Production" and Year is [pin missing: value2]

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Date | Title | Creators | Item Type | No Grouping
Jump to: 2022
Number of items at this level: 8.

2022

Article Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Artificial intelligence has been widely used in the field of dentistry in recent years. The present study highlights current advances and limitations in integrating artificial intelligence, machine learning, and deep learning in subfields of dentistry including periodontology, endodontics, orthodontics, restorative dentistry, and oral pathology. This article aims to provide a systematic review of current clinical applications of artificial intelligence within different fields of dentistry. The preferred reporting items for systematic reviews (PRISMA) statement was used as a formal guideline for data collection. Data was obtained from research studies for 2009–2022. The analysis included a total of 55 papers from Google Scholar, IEEE, PubMed, and Scopus databases. Results show that artificial intelligence has the potential to improve dental care, disease diagnosis and prognosis, treatment planning, and risk assessment. Finally, this study highlights the limitations of the analyzed studies and provides future directions to improve dental care metadata Fatima, Anum and Shafi, Imran and Afzal, Hammad and Díez, Isabel De La Torre and Lourdes, Del Rio-Solá M. and Breñosa, Jose and Martínez Espinosa, Julio César and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, UNSPECIFIED (2022) Advancements in Dentistry with Artificial Intelligence: Current Clinical Applications and Future Perspectives. Healthcare, 10 (11). p. 2188. ISSN 2227-9032

Article Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Español Patient care and convenience remain the concern of medical professionals and caregivers alike. An unconscious patient confined to a bed may develop fluid accumulation and pressure sores due to inactivity and deficiency of oxygen flow. Moreover, weight monitoring is crucial for an effective treatment plan, which is difficult to measure for bedridden patients. This paper presents the design and development of a smart and cost-effective independent system for lateral rotation, movement, weight measurement, and transporting immobile patients. Optimal dimensions and practical design specifications are determined by a survey across various hospitals. Subsequently, the proposed hoist-based weighing and turning mechanism is CAD-modeled and simulated. Later, the structural analysis is carried out to select suitable metallurgy for various sub-assemblies to ensure design reliability. After fabrication, optimization, integration, and testing procedures, the base frame is designed to mount a hydraulic motor for the actuator, a DC power source for self-sustenance, and lockable wheels for portability. The installation of a weighing scale and a hydraulic actuator is ensured to lift the patient for weight measuring up to 600 pounds or lateral turning of 80 degrees both ways. The developed system offers simple operating characteristics, allows for keeping patient weight records, and assists nurses in changing patients’ lateral positions both ways, comfortably massage patients’ backs, and transport them from one bed to another. Additionally, being lightweight offers reduced contact with the patient to increase the healthcare staff’s safety in pandemics; it is also height adjustable and portable, allowing for use with multiple-sized beds and easy transportation across the medical facility. The feedback from paramedics is encouraging regarding reducing labor-intensive nursing tasks, alleviating the discomfort of long-term bed-ridden patients, and allowing medical practitioners to suggest better treatment plans metadata Shafi, Imran and Farooq, Muhammad Siddique and De La Torre Díez, Isabel and Breñosa, Jose and Martínez Espinosa, Julio César and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, UNSPECIFIED (2022) Design and Development of Smart Weight Measurement, Lateral Turning and Transfer Bedding for Unconscious Patients in Pandemics. Healthcare, 10 (11). p. 2174. ISSN 2227-9032

Article Subjects > Social Sciences Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés This article proposes a discussion on the form of coexistence of local Development Agencies in Uruguay, with local governments in the face of the new scenarios marked by the decentralization process, initiated in the country with the Constitutional Reform of 1996 and culminating in February 2009, with the Law of Political Decentralization and Citizen Participation. The discussion applies in particular to the local development agency of the city of Rivera (ADR), located in the northeast of the country. A descriptive, mixed, bibliographic, documentary investigation was carried out with primary data collection to internal and external references to ADR. The results show that the coexistence of both institutions has been difficult, without defining clear roles. Promoting dialogue to define the role of each seems to be the great challenge facing the sustainability of the agency metadata Garat de Marin, Mirtha Silvana and Soriano Flores, Emmanuel and Rodríguez Velasco, Carmen Lilí and Silva Alvarado, Eduardo and Calderón Iglesias, Rubén and Álvarez, Roberto Marcelo and Gracia Villar, Santos mail silvana.marin@uneatlantico.es, emmanuel.soriano@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED, ruben.calderon@uneatlantico.es, roberto.alvarez@uneatlantico.es, santos.gracia@uneatlantico.es (2022) Development Agencies and Local Governments—Coexistence within the Same Territory. Social Sciences, 11 (9). p. 398. ISSN 2076-0760

Article Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés The diagnosis of early-stage lung cancer is challenging due to its asymptomatic nature, especially given the repeated radiation exposure and high cost of computed tomography(CT). Examining the lung CT images to detect pulmonary nodules, especially the cell lung cancer lesions, is also tedious and prone to errors even by a specialist. This study proposes a cancer diagnostic model based on a deep learning-enabled support vector machine (SVM). The proposed computer-aided design (CAD) model identifies the physiological and pathological changes in the soft tissues of the cross-section in lung cancer lesions. The model is first trained to recognize lung cancer by measuring and comparing the selected profile values in CT images obtained from patients and control patients at their diagnosis. Then, the model is tested and validated using the CT scans of both patients and control patients that are not shown in the training phase. The study investigates 888 annotated CT scans from the publicly available LIDC/IDRI database. The proposed deep learning-assisted SVM-based model yields 94% accuracy for pulmonary nodule detection representing early-stage lung cancer. It is found superior to other existing methods including complex deep learning, simple machine learning, and the hybrid techniques used on lung CT images for nodule detection. Experimental results demonstrate that the proposed approach can greatly assist radiologists in detecting early lung cancer and facilitating the timely management of patients. metadata Shafi, Imran and Din, Sadia and Khan, Asim and Díez, Isabel De La Torre and Pali-Casanova, Ramón and Tutusaus, Kilian and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, ramon.pali@unini.edu.mx, kilian.tutusaus@uneatlantico.es, UNSPECIFIED (2022) An Effective Method for Lung Cancer Diagnosis from CT Scan Using Deep Learning-Based Support Vector Network. Cancers, 14 (21). p. 5457. ISSN 2072-6694

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés The purpose of this article is to help to bridge the gap between sustainability and its application to project management by developing a methodology based on artificial intelligence to diagnose, classify, and forecast the level of sustainability of a sample of 186 projects aimed at local communities in Latin American and Caribbean countries. First, the compliance evaluation with the Sustainable Development Goals (SDGs) within the framework of the 2030 Agenda served to diagnose and determine, through fuzzy sets, a global sustainability index for the sample, resulting in a value of 0.638, in accordance with the overall average for the region. Probabilistic predictions were then made on the sustainability of the projects using a series of supervised learning classifiers (SVM, Random Forest, AdaBoost, KNN, etc.), with the SMOTE resampling technique, which provided a significant improvement toward the results of the different metrics of the base models. In this context, the Support Vector Machine (SVM) + SMOTE was the best classification algorithm, with accuracy of 0.92. Lastly, the extrapolation of this methodology is to be expected toward other realities and local circumstances, contributing to the fulfillment of the SDGs and the development of individual and collective capacities through the management and direction of projects. metadata García Villena, Eduardo and Pascual Barrera, Alina Eugenia and Álvarez, Roberto Marcelo and Dzul López, Luis Alonso and Tutusaus, Kilian and Vidal Mazón, Juan Luis and Miró Vera, Yini Airet and Brie, Santiago and López Flores, Miguel A. mail eduardo.garcia@uneatlantico.es, alina.pascual@unini.edu.mx, roberto.alvarez@uneatlantico.es, luis.dzul@uneatlantico.es, kilian.tutusaus@uneatlantico.es, juanluis.vidal@uneatlantico.es, yini.miro@uneatlantico.es, santiago.brie@uneatlantico.es, miguelangel.lopez@uneatlantico.es (2022) Evaluation of the Sustainable Development Goals in the Diagnosis and Prediction of the Sustainability of Projects Aimed at Local Communities in Latin America and the Caribbean. Applied Sciences, 12 (21). p. 11188. ISSN 2076-3417

Article Subjects > Social Sciences Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Angola, as with many countries on the African continent, has great inequalities or asymmetries between its provinces. At the economic, financial, and technological level, there is a great disparity between them, where it is observed that the province of Luanda is the largest financial business center to the detriment of others, such as Moxico, Zaire, and Cabinda. In the latter, despite the advantages of high oil production, from a regional point of view, they remain almost stagnant in time, in a social dysfunction where the population lives on extractivism and artisanal fishing. This article analyzes the most important events in contemporary regional history, the Portuguese occupation that was the Portuguese colonial rule over Angola (1890–1930) and the civil war that was a struggle between Angolans for control of the country (1975–2002), in the consolidation of the asymmetries between provinces. For this work, a theoretical-reflective study was conducted based on the reading of books, articles, and previous investigations on the phenomenon studied. Considering the interpretation and analysis of the theoretical content obtained through the bibliographic research conducted, this theoretical construction approaches the qualitative approach. We conclude that the deep inequalities between regions and within them, between the provinces studied, originated historically in the form of exploitation of the regions and from the consequences of the war. The asymmetries, observed through the variables studied show that the provinces historically explored and considered object regions present a lower growth compared to those that were considered subject regions in which the applied geopolitical strategy, as they are centers of primary production flows, was different. We also observe that, due to the conflicts of the civil war in the less developed regions, the inequalities have deepened, contributing seriously to a higher level of poverty and a lower development of the provinces where these conflicts took place. metadata Catoto Capitango, João Adolfo and Garat de Marin, Mirtha Silvana and Soriano Flores, Emmanuel and Rojo Gutiérrez, Marco Antonio and Gracia Villar, Mónica and Durántez Prados, Frigdiano Álvaro mail UNSPECIFIED, silvana.marin@uneatlantico.es, emmanuel.soriano@uneatlantico.es, marco.rojo@unini.edu.mx, monica.gracia@uneatlantico.es, durantez@uneatlantico.es (2022) Inequalities and Asymmetries in the Development of Angola’s Provinces: The Impact of Colonialism and Civil War. Social Sciences, 11 (8). p. 334. ISSN 2076-0760

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Conventional outage management practices in distribution systems are tedious and complex due to the long time taken to locate the fault. Emerging smart technologies and various cloud services offered could be utilized and integrated into the power industry to enhance the overall process, especially in the fault monitoring and normalizing fields in distribution systems. This paper introduces smart fault monitoring and normalizing technologies in distribution systems by using one of the most popular cloud service platforms, the Microsoft Azure Internet of Things (IoT) Hub, together with some of the related services. A hardware prototype was constructed based on part of a real underground distribution system network, and the fault monitoring and normalizing techniques were integrated to form a system. Such a system with IoT integration effectively reduces the power outage experienced by customers in the healthy section of the faulted feeder from approximately 1 h to less than 5 min and is able to improve the System Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI) in electric utility companies significantly metadata Peter, Geno and Stonier, Albert Alexander and Gupta, Punit and Gavilanes, Daniel and Masías Vergara, Manuel and Lung sin, Jong mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, daniel.gavilanes@uneatlantico.es, manuel.masias@uneatlantico.es, UNSPECIFIED (2022) Smart Fault Monitoring and Normalizing of a Power Distribution System Using IoT. Energies, 15 (21). p. 8206. ISSN 1996-1073

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Technology’s expansion has contributed to the rise in popularity of social media platforms. Twitter is one of the leading social media platforms that people use to share their opinions. Such opinions, sometimes, may contain threatening text, deliberately or non-deliberately, which can be disturbing for other users. Consequently, the detection of threatening content on social media is an important task. Contrary to high-resource languages like English, Dutch, and others that have several such approaches, the low-resource Urdu language does not have such a luxury. Therefore, this study presents an intelligent threatening language detection for the Urdu language. A stacking model is proposed that uses an extra tree (ET) classifier and Bayes theorem-based Bernoulli Naive Bayes (BNB) as the based learners while logistic regression (LR) is employed as the meta learner. A performance analysis is carried out by deploying a support vector classifier, ET, LR, BNB, fully connected network, convolutional neural network, long short-term memory, and gated recurrent unit. Experimental results indicate that the stacked model performs better than both machine learning and deep learning models. With 74.01% accuracy, 70.84% precision, 75.65% recall, and 73.99% F1 score, the model outperforms the existing benchmark study. metadata Mehmood, Aneela and Farooq, Muhammad Shoaib and Naseem, Ansar and Rustam, Furqan and Gracia Villar, Mónica and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, monica.gracia@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED (2022) Threatening URDU Language Detection from Tweets Using Machine Learning. Applied Sciences, 12 (20). p. 10342. ISSN 2076-3417

This list was generated on Fri Dec 2 23:40:16 2022 UTC.

<a class="ep_document_link" href="/512/1/43.%20qCOVID%20vs%20NEWS.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

One-on-one comparison between qCSI and NEWS scores for mortality risk assessment in patients with COVID-19

Objective To compare the predictive value of the quick COVID-19 Severity Index (qCSI) and the National Early Warning Score (NEWS) for 90-day mortality amongst COVID-19 patients. Methods Multicenter retrospective cohort study conducted in adult patients transferred by ambulance to an emergency department (ED) with suspected COVID-19 infection subsequently confirmed by a SARS-CoV-2 test (polymerase chain reaction). We collected epidemiological data, clinical covariates (respiratory rate, oxygen saturation, systolic blood pressure, heart rate, temperature, level of consciousness and use of supplemental oxygen) and hospital variables. The primary outcome was cumulative all-cause mortality during a 90-day follow-up, with mortality assessment monitoring time points at 1, 2, 7, 14, 30 and 90 days from ED attendance. Comparison of performances for 90-day mortality between both scores was carried out by univariate analysis. Results From March to November 2020, we included 2,961 SARS-CoV-2 positive patients (median age 79 years, IQR 66–88), with 49.2% females. The qCSI score provided an AUC ranging from 0.769 (1-day mortality) to 0.749 (90-day mortality), whereas AUCs for NEWS ranging from 0.825 for 1-day mortality to 0.777 for 90-day mortality. At all-time points studied, differences between both scores were statistically significant (p < .001). Conclusion Patients with SARS-CoV-2 can rapidly develop bilateral pneumonias with multiorgan disease; in these cases, in which an evacuation by the EMS is required, reliable scores for an early identification of patients with risk of clinical deterioration are critical. The NEWS score provides not only better prognostic results than those offered by qCSI at all the analyzed time points, but it is also better suited for COVID-19 patients.

Producción Científica

Francisco Martín-Rodríguez mail , Ancor Sanz-García mail , Guillermo J. Ortega mail , Juan F. Delgado-Benito mail , Eduardo Garcia Villena mail eduardo.garcia@uneatlantico.es, Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Raúl López-Izquierdo mail , Miguel A. Castro Villamor mail ,

Martín-Rodríguez

en

close

FairHealth: Long-Term Proportional Fairness-Driven 5G Edge Healthcare in Internet of Medical Things

Recently, the Internet of Medical Things (IoMT) could offload healthcare services to 5 G edge computing for low latency. However, some existing works assumed altruistic patients will sacrifice Quality of Service (QoS) for the global optimum. For priority-aware and deadline-sensitive healthcare, this sufficient and simplified assumption will undermine the engagement enthusiasm, i.e., unfairness. To address this issue, we propose a long-term proportional fairness-driven 5 G edge healthcare, i.e., FairHealth. First, we establish a long-term Nash bargaining game to model the service offloading, considering the stochastic demand and dynamic environment. We then design a Lyapunov-based proportional-fairness resource scheduling algorithm, which decouples the long-term fairness problem into single-slot sub-problems, realizing a trade-off between service stability and fairness. Moreover, we propose a block-coordinate descent method to iteratively solve non-convex fair sub-problems. Simulation results show that our scheme can improve 74.44% of the fairness index (i.e., Nash product), compared with the classic global time-optimal scheme.

Producción Científica

Xi Lin mail , Jun Wu mail , Ali Kashif Bashir mail , Wu Yang mail , Aman Singh mail aman.singh@uneatlantico.es, Ahmad Ali AlZubi mail ,

Lin

<a href="/3058/1/socsci-11-00334.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Inequalities and Asymmetries in the Development of Angola’s Provinces: The Impact of Colonialism and Civil War

Angola, as with many countries on the African continent, has great inequalities or asymmetries between its provinces. At the economic, financial, and technological level, there is a great disparity between them, where it is observed that the province of Luanda is the largest financial business center to the detriment of others, such as Moxico, Zaire, and Cabinda. In the latter, despite the advantages of high oil production, from a regional point of view, they remain almost stagnant in time, in a social dysfunction where the population lives on extractivism and artisanal fishing. This article analyzes the most important events in contemporary regional history, the Portuguese occupation that was the Portuguese colonial rule over Angola (1890–1930) and the civil war that was a struggle between Angolans for control of the country (1975–2002), in the consolidation of the asymmetries between provinces. For this work, a theoretical-reflective study was conducted based on the reading of books, articles, and previous investigations on the phenomenon studied. Considering the interpretation and analysis of the theoretical content obtained through the bibliographic research conducted, this theoretical construction approaches the qualitative approach. We conclude that the deep inequalities between regions and within them, between the provinces studied, originated historically in the form of exploitation of the regions and from the consequences of the war. The asymmetries, observed through the variables studied show that the provinces historically explored and considered object regions present a lower growth compared to those that were considered subject regions in which the applied geopolitical strategy, as they are centers of primary production flows, was different. We also observe that, due to the conflicts of the civil war in the less developed regions, the inequalities have deepened, contributing seriously to a higher level of poverty and a lower development of the provinces where these conflicts took place.

Producción Científica

João Adolfo Catoto Capitango mail , Mirtha Silvana Garat de Marin mail silvana.marin@uneatlantico.es, Emmanuel Soriano Flores mail emmanuel.soriano@uneatlantico.es, Marco Antonio Rojo Gutiérrez mail marco.rojo@unini.edu.mx, Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Frigdiano Álvaro Durántez Prados mail durantez@uneatlantico.es,

Catoto Capitango

<a href="/3480/1/cancers-14-03914-v2.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Thyroid Disease Prediction Using Selective Features and Machine Learning Techniques

Thyroid disease prediction has emerged as an important task recently. Despite existing approaches for its diagnosis, often the target is binary classification, the used datasets are small-sized and results are not validated either. Predominantly, existing approaches focus on model optimization and the feature engineering part is less investigated. To overcome these limitations, this study presents an approach that investigates feature engineering for machine learning and deep learning models. Forward feature selection, backward feature elimination, bidirectional feature elimination, and machine learning-based feature selection using extra tree classifiers are adopted. The proposed approach can predict Hashimoto’s thyroiditis (primary hypothyroid), binding protein (increased binding protein), autoimmune thyroiditis (compensated hypothyroid), and non-thyroidal syndrome (NTIS) (concurrent non-thyroidal illness). Extensive experiments show that the extra tree classifier-based selected feature yields the best results with 0.99 accuracy and an F1 score when used with the random forest classifier. Results suggest that the machine learning models are a better choice for thyroid disease detection regarding the provided accuracy and the computational complexity. K-fold cross-validation and performance comparison with existing studies corroborate the superior performance of the proposed approach.

Producción Científica

Rajasekhar Chaganti mail , Furqan Rustam mail , Isabel De La Torre Díez mail , Juan Luis Vidal Mazón mail juanluis.vidal@uneatlantico.es, Carmen Lilí Rodríguez Velasco mail carmen.rodriguez@uneatlantico.es, Imran Ashraf mail ,

Chaganti

<a href="/3487/1/s41598-022-16916-7.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Improvement of energy conservation using blockchain-enabled cognitive wireless networks for smart cities

In Smart Cities’ applications, Multi-node cooperative spectrum sensing (CSS) can boost spectrum sensing efficiency in cognitive wireless networks (CWN), although there is a non-linear interaction among number of nodes and sensing efficiency. Cooperative sensing by nodes with low computational cost is not favorable to improving sensing reliability and diminishes spectrum sensing energy efficiency, which poses obstacles to the regular operation of CWN. To enhance the evaluation and interpretation of nodes and resolves the difficulty of sensor selection in cognitive sensor networks for energy-efficient spectrum sensing. We examined reducing energy usage in smart cities while substantially boosting spectrum detecting accuracy. In optimizing energy effectiveness in spectrum sensing while minimizing complexity, we use the energy detection for spectrum sensing and describe the challenge of sensor selection. This article proposed the algorithm for choosing the sensing nodes while reducing the energy utilization and improving the sensing efficiency. All the information regarding nodes is saved in the fusion center (FC) through which blockchain encrypts the information of nodes ensuring that a node’s trust value conforms to its own without any ambiguity, CWN-FC pick high-performance nodes to engage in CSS. The performance evaluation and computation results shows the comparison between various algorithms with the proposed approach which achieves 10% sensing efficiency in finding the solution for identification and triggering possibilities with the value of α=1.5 and γ=2.5 with the varying number of nodes.

Producción Científica

Shalli Rani mail , Himanshi Babbar mail , Syed Hassan Ahmed Shah mail , Aman Singh mail aman.singh@uneatlantico.es,

Rani