Procedimiento metodológico para el mejoramiento de la fase técnica de despegue en las pruebas de salto en pruebas combinadas de atletismo

Tesis Materias > Educación física y el deporte Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Cerrado Español El presente trabajo se dirige al diseño de un procedimiento metodológicos para el mejoramiento de la fase técnica de despegue en las pruebas de salto en pruebas combinadas de atletismo, a partir de problemáticas detectadas en atletas de la categoría juvenil de Honduras. La tesis se sustenta desde el punto de vista teórico en la metodología del entrenamiento deportivo, que permite contribuir al deporte de atletismo en las pruebas de salto en el decatlón atendiendo a la caracterización en la competitividad, la preparación técnica para así asumir las posiciones pertinentes para aportar en mejorar las deficiencias en la fase técnica de despegue en los atletas juveniles en Honduras, de los cuales se ofrecen características tanto biomecánicas como psicológicas como aspectos de vital importancia para la preparación técnica en el deporte de atletismo. Los aspectos teóricos sirvieron de soporte el diseño del procedimiento concebido para su desarrollo en cuatro etapas fundamentales que son: I etapa: diagnóstico. II etapa: planificación III etapa: ejecución. IV etapa: evaluación, las cuales en su interior se ofrecen ejercicios, dosificación y evaluación permitiendo su desempeño en una evaluación condicionada en situaciones reales. La investigación fue realizada con un grupo de cuatro atletas de la categoría juvenil todos pertenecientes al programa de talento deportivo del Comité Olímpico Hondureño y la Federación Hondureña de Atletismo, siendo esta una muestra no probabilística por conveniencia; también participaron ocho entrenadores de atletismo del país los cuales en su mayoría han tenido experiencia de trabajo en el área de salto y algunos en decatlón; los métodos, técnicas e instrumentos de medición que se utilizaron fueron: el análisis y síntesis que contribuyó a lograr el posicionamiento teórico en la tesis, la entrevistas para el diagnóstico en cuanto al conocimiento de entrenadores y atletas sobre la preparación técnica de las pruebas de saltos en atletas juveniles de decatlón y la observación la cual contribuyó a constatar el desarrollo de la preparación técnica de las pruebas de saltos mediante la observación personalizada de los atletas durante las sesiones de entrenamiento, para así poder comprobar la efectividad del procedimiento tras la aplicación parcial, en ese sentido, se evalúa de forma cualitativa la fase de despegue y también fue evaluado desde el punto de vista biomecánico, sobre la base del software Human utilizando como instrumento cámaras de grabación de alta definición contribuyendo al cumplimiento del objetivo de la tesis. El informe está constituido una introducción, un marco teórico con un capítulo y un marco empírico con la metodología, resultados y discusión, la tesis cierra con las conclusiones y recomendaciones como consideraciones finales de la investigación. metadata Vargas Molina, Bayron Martin mail bayronvargas954@gmail.com (2022) Procedimiento metodológico para el mejoramiento de la fase técnica de despegue en las pruebas de salto en pruebas combinadas de atletismo. Masters thesis, SIN ESPECIFICAR.

Texto completo no disponible.

Resumen

El presente trabajo se dirige al diseño de un procedimiento metodológicos para el mejoramiento de la fase técnica de despegue en las pruebas de salto en pruebas combinadas de atletismo, a partir de problemáticas detectadas en atletas de la categoría juvenil de Honduras. La tesis se sustenta desde el punto de vista teórico en la metodología del entrenamiento deportivo, que permite contribuir al deporte de atletismo en las pruebas de salto en el decatlón atendiendo a la caracterización en la competitividad, la preparación técnica para así asumir las posiciones pertinentes para aportar en mejorar las deficiencias en la fase técnica de despegue en los atletas juveniles en Honduras, de los cuales se ofrecen características tanto biomecánicas como psicológicas como aspectos de vital importancia para la preparación técnica en el deporte de atletismo. Los aspectos teóricos sirvieron de soporte el diseño del procedimiento concebido para su desarrollo en cuatro etapas fundamentales que son: I etapa: diagnóstico. II etapa: planificación III etapa: ejecución. IV etapa: evaluación, las cuales en su interior se ofrecen ejercicios, dosificación y evaluación permitiendo su desempeño en una evaluación condicionada en situaciones reales. La investigación fue realizada con un grupo de cuatro atletas de la categoría juvenil todos pertenecientes al programa de talento deportivo del Comité Olímpico Hondureño y la Federación Hondureña de Atletismo, siendo esta una muestra no probabilística por conveniencia; también participaron ocho entrenadores de atletismo del país los cuales en su mayoría han tenido experiencia de trabajo en el área de salto y algunos en decatlón; los métodos, técnicas e instrumentos de medición que se utilizaron fueron: el análisis y síntesis que contribuyó a lograr el posicionamiento teórico en la tesis, la entrevistas para el diagnóstico en cuanto al conocimiento de entrenadores y atletas sobre la preparación técnica de las pruebas de saltos en atletas juveniles de decatlón y la observación la cual contribuyó a constatar el desarrollo de la preparación técnica de las pruebas de saltos mediante la observación personalizada de los atletas durante las sesiones de entrenamiento, para así poder comprobar la efectividad del procedimiento tras la aplicación parcial, en ese sentido, se evalúa de forma cualitativa la fase de despegue y también fue evaluado desde el punto de vista biomecánico, sobre la base del software Human utilizando como instrumento cámaras de grabación de alta definición contribuyendo al cumplimiento del objetivo de la tesis. El informe está constituido una introducción, un marco teórico con un capítulo y un marco empírico con la metodología, resultados y discusión, la tesis cierra con las conclusiones y recomendaciones como consideraciones finales de la investigación.

Tipo de Documento: Tesis (Masters)
Palabras Clave: decathlon, pruebas de salto, fase de despegue, técnica, mejoramiento
Clasificación temática: Materias > Educación física y el deporte
Divisiones: Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Depositado: 20 Oct 2023 23:30
Ultima Modificación: 20 Oct 2023 23:30
URI: https://repositorio.unib.org/id/eprint/791

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a href="/17880/1/nutrients-17-03613.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Image-Based Dietary Energy and Macronutrients Estimation with ChatGPT-5: Cross-Source Evaluation Across Escalating Context Scenarios

Background/Objectives: Estimating energy and macronutrients from food images is clinically relevant yet challenging, and rigorous evaluation requires transparent accuracy metrics with uncertainty and clear acknowledgement of reference data limitations across heterogeneous sources. This study assessed ChatGPT-5, a general-purpose vision-language model, across four scenarios differing in the amount and type of contextual information provided, using a composite dataset to quantify accuracy for calories and macronutrients. Methods: A total of 195 dishes were evaluated, sourced from Allrecipes.com, the SNAPMe dataset, and Home-prepared, weighed meals. Each dish was evaluated under Case 1 (image only), Case 2 (image plus standardized non-visual descriptors), Case 3 (image plus ingredient lists with amounts), and Case 4 (replicates Case 3 but excluding the image). The primary endpoint was kcal Mean Absolute Error (MAE); secondary endpoints included Median Absolute Error (MedAE) and Root Mean Square Error (RMSE) for kcal and macronutrients (protein, carbohydrates, and lipids), all reported with 95% Confidence Intervals (CIs) via dish-level bootstrap resampling and accompanied by absolute differences (Δ) between scenarios. Inference settings were standardized to support reproducibility and variance estimation. Source stratified analyses and quartile summaries were conducted to examine heterogeneity by curation level and nutrient ranges, with additional robustness checks for error complexity relationships. Results and Discussion: Accuracy improved from Case 1 to Case 2 and further in Case 3 for energy and all macronutrients when summarized by MAE, MedAE, and RMSE with 95% CIs, with absolute reductions (Δ) indicating material gains as contextual information increased. In contrast to Case 3, estimation accuracy declined in Case 4, underscoring the contribution of visual cues. Gains were largest in the Home-prepared dietitian-weighed subset and smaller yet consistent for Allrecipes.com and SNAPMe, reflecting differences in reference curation and measurement fidelity across sources. Scenario-level trends were concordant across sources, and stratified and quartile analyses showed coherent patterns of decreasing absolute errors with the provision of structured non-visual information and detailed ingredient data. Conclusions: ChatGPT-5 can deliver practically useful calorie and macronutrient estimates from food images, particularly when augmented with standardized nonvisual descriptors and detailed ingredients, as evidenced by reductions in MAE, MedAE, and RMSE with 95% CIs across scenarios. The decline in accuracy observed when the image was omitted, despite providing detailed ingredient information, indicates that visual cues contribute meaningfully to estimation performance and that improvements are not solely attributable to arithmetic from ingredient lists. Finally, to promote generalizability, it is recommended that future studies include repeated evaluations across diverse datasets, ensure public availability of prompts and outputs, and incorporate systematic comparisons with non-artificial-intelligence baselines.

Producción Científica

Marcela Rodríguez- Jiménez mail , Gustavo Daniel Martín-del-Campo-Becerra mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Jorge Crespo-Álvarez mail jorge.crespo@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,

Rodríguez- Jiménez

<a class="ep_document_link" href="/17885/1/s41598-025-26052-7.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Dual-modality fusion for mango disease classification using dynamic attention based ensemble of leaf & fruit images

Mango is one of the most beloved fruits and plays an indispensable role in the agricultural economies of many tropical countries like Pakistan, India, and other Southeast Asian countries. Similar to other fruits, mango cultivation is also threatened by various diseases, including Anthracnose and Red Rust. Although farmers try to mitigate such situations on time, early and accurate detection of mango diseases remains challenging due to multiple factors, such as limited understanding of disease diversity, similarity in symptoms, and frequent misclassification. To avoid such instances, this study proposes a multimodal deep learning framework that leverages both leaf and fruit images to improve classification performance and generalization. Individual CNN-based pre-trained models, including ResNet-50, MobileNetV2, EfficientNet-B0, and ConvNeXt, were trained separately on curated datasets of mango leaf and fruit diseases. A novel Modality Attention Fusion (MAF) mechanism was introduced to dynamically weight and combine predictions from both modalities based on their discriminative strength, as some diseases are more prominent on leaves than on fruits, and vice versa. To address overfitting and improve generalization, a class-aware augmentation pipeline was integrated, which performs augmentation according to the specific characteristics of each class. The proposed attention-based fusion strategy significantly outperformed individual models and static fusion approaches, achieving a test accuracy of 99.08%, an F1 score of 99.03%, and a perfect ROC-AUC of 99.96% using EfficientNet-B0 as the base. To evaluate the model’s real-world applicability, an interactive web application was developed using the Django framework and evaluated through out-of-distribution (OOD) testing on diverse mango samples collected from public sources. These findings underline the importance of combining visual cues from multiple organs of plants and adapting model attention to contextual features for real-world agricultural diagnostics.

Producción Científica

Muhammad Mohsin mail , Muhammad Shadab Alam Hashmi mail , Irene Delgado Noya mail irene.delgado@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Nagwan Abdel Samee mail , Imran Ashraf mail ,

Mohsin

en

close

Socio-economic status, food security and adherence to the Mediterranean diet in five Mediterranean countries: the DELICIOUS project

Food security is a universal need worldwide. This study explored the relationship between food security and adherence to the Mediterranean diet in the context of the DELICIOUS project. A survey involving 2,011 parents of children and adolescents aged 6–17 years was conducted. Adherence to the Mediterranean diet was assessed through the KIDMED score. Information regarding the ease of accessing Mediterranean foods, economic allowance, employment and residence was collected. Logistic regressions analyses were performed to test the associations. Individuals living in rural areas and reporting difficulty in obtaining all studied foods were less likely to follow the Mediterranean diet. Higher adherence was associated with a household monthly income higher than €4000. No associations with family status and no differences across countries were found. The progressive shift away from the Mediterranean diet may depend not only on cultural preferences for unhealthier, industrial alternatives but also on family budgets and food accessibility.

Producción Científica

Francesca Scazzina mail , Alice Rosi mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Carlos Poveda-Loor mail , Osama Abdelkarim mail , Mohamed Aly mail , Evelyn Frias-Toral mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Lorenzo Monasta mail , Nadia Paladino mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,

Scazzina

<a class="ep_document_link" href="/17890/1/PIIS2001037025004581.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Enhancing detection of epileptic seizures using transfer learning and EEG brain activity signals

Epileptic seizures are neurological events characterized by sudden and excessive electrical discharges in the brain, leading to disruptions in brain function. Epileptic seizures can lead to life-threatening situations such as status epilepticus, which is characterized by prolonged or recurrent seizures and may lead to respiratory distress, aspiration pneumonia, and cardiac arrhythmias. Therefore, there is a need for an automated approach that can efficiently diagnose epileptic seizures at an early stage. The primary objective of this study is to develop a highly accurate approach for the early diagnosis of epileptic seizures. We use electroencephalography (EEG) signal data based on different brain activities to conduct experiments for epileptic seizure detection. For this purpose, a novel transfer learning technique called random forest-gated recurrent unit (RFGR) is proposed. The EEG brain activity signal data is fed into the RFGR model to generate a new feature set. The newly generated features are based on the class prediction probabilities extracted by the RFGR and are utilized to train models. Extensive experiments are carried out to investigate the performance of the proposed approach. Results demonstrate that the RFGR, when used with the random forest model, outperforms state-of-the-art techniques, achieving a high accuracy of 99.00 %. Additionally, explainable artificial intelligence analysis is utilized to provide transparent and understandable explanations of the decision-making processes of the proposed approach.

Producción Científica

Erol Kına mail , Ali Raza mail , Prudhvi Chowdary Are mail , Carmen Lilí Rodríguez Velasco mail carmen.rodriguez@uneatlantico.es, Julién Brito Ballester mail julien.brito@uneatlantico.es, Isabel de la Torre Diez mail , Naveed Anwer Butt mail , Imran Ashraf mail ,

Kına

<a class="ep_document_link" href="/17858/1/s41598-025-18979-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Detection and classification of brain tumor using a hybrid learning model in CT scan images

Accurate diagnosis of brain tumors is critical in understanding the prognosis in terms of the type, growth rate, location, removal strategy, and overall well-being of the patients. Among different modalities used for the detection and classification of brain tumors, a computed tomography (CT) scan is often performed as an early-stage procedure for minor symptoms like headaches. Automated procedures based on artificial intelligence (AI) and machine learning (ML) methods are used to detect and classify brain tumors in Computed Tomography (CT) scan images. However, the key challenges in achieving the desired outcome are associated with the model’s complexity and generalization. To address these issues, we propose a hybrid model that extracts features from CT images using classical machine learning. Additionally, although MRI is a common modality for brain tumor diagnosis, its high cost and longer acquisition time make CT scans a more practical choice for early-stage screening and widespread clinical use. The proposed framework has different stages, including image acquisition, pre-processing, feature extraction, feature selection, and classification. The hybrid architecture combines features from ResNet50, AlexNet, LBP, HOG, and median intensity, classified using a multilayer perceptron. The selection of the relevant features in our proposed hybrid model was extracted using the SelectKBest algorithm. Thus, it optimizes the proposed model performance. In addition, the proposed model incorporates data augmentation to handle the imbalanced datasets. We employed a scoring function to extract the features. The Classification is ensured using a multilayer perceptron neural network (MLP). Unlike most existing hybrid approaches, which primarily target MRI-based brain tumor classification, our method is specifically designed for CT scan images, addressing their unique noise patterns and lower soft-tissue contrast. To the best of our knowledge, this is the first work to integrate LBP, HOG, median intensity, and deep features from both ResNet50 and AlexNet in a structured fusion pipeline for CT brain tumor classification. The proposed hybrid model is tested on data from numerous sources and achieved an accuracy of 94.82%, precision of 94.52%, specificity of 98.35%, and sensitivity of 94.76% compared to state-of-the-art models. While MRI-based models often report higher accuracies, the proposed model achieves 94.82% on CT scans, within 3–4% of leading MRI-based approaches, demonstrating strong generalization despite the modality difference. The proposed hybrid model, combining hand-crafted and deep learning features, effectively improves brain tumor detection and classification accuracy in CT scans. It has the potential for clinical application, aiding in early and accurate diagnosis. Unlike MRI, which is often time-intensive and costly, CT scans are more accessible and faster to acquire, making them suitable for early-stage screening and emergency diagnostics. This reinforces the practical and clinical value of the proposed model in real-world healthcare settings.

Producción Científica

Roja Ghasemi mail , Naveed Islam mail , Samin Bayat mail , Muhammad Shabir mail , Shahid Rahman mail , Farhan Amin mail , Isabel de la Torre mail , Ángel Gabriel Kuc Castilla mail angel.kuc@uneatlantico.es, Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx,

Ghasemi