False Contraindications for Vaccinations Result in Sub-Optimal Vaccination Coverage in Quito, Ecuador: A Cross-Sectional Study

Article Subjects > Biomedicine Ibero-american International University > Research > Scientific Production Abierto Inglés Vaccination coverage in Ecuador has decreased since 2013, falling short of the World Health Organization’s vaccination goal. There are several causes for this deficiency in coverage, one of these are lost vaccination opportunities, which are caused when a patient without contraindications postpones, or for other reasons fails to receive a recommended immunization. The objective of this study was to determine the state of knowledge regarding vaccination contraindications among the Metropolitan District of Quito health personnel to assess missed vaccination opportunities. Through this cross-sectional descriptive study, health personnel were surveyed online and asked 18 clinical scenarios which were created to evaluate their knowledge of the true contraindications of vaccination, and measure missed opportunities. A total of 273 surveys were collected; 74% belonged to the public health system, and the rest represented by private practitioners. Of those surveyed, 98.2% of health personnel had improperly denied vaccination at least once. We specifically found vaccinations were incorrectly denied more frequently in cases where the hypothetical patient presented mild or moderate fever cases. The use of corticosteroids, autoimmune diseases, and egg allergy were also incorrectly denied (89%, 71.4%, 72.9%, and 58.6%, respectively). Among the health personnel surveyed, there is an apparent lack of knowledge of the true contraindications of vaccination and differences in knowledge about contraindications according to personnel in charge of administering immunization to children. Our preliminary results suggest that lack of education related to side effects could be biasing medical professionals’ decisions, causing them to unnecessarily delay or deny vaccinations, which likely contributes to explaining low overall vaccination coverage in Quito, the capital city of Ecuador. metadata Andrade-Guerrero, Felipe and Tapia, Adriana and Andrade, Vinicio and Vásconez-González, Jorge and Andrade-Guerrero, José and Noroña-Calvachi, Carlos and Izquierdo Condoy, Juan Sebastian and Yeager, Justin and Ortiz-Prado, Esteban mail UNSPECIFIED (2022) False Contraindications for Vaccinations Result in Sub-Optimal Vaccination Coverage in Quito, Ecuador: A Cross-Sectional Study. Vaccines, 11 (1). p. 60. ISSN 2076-393X

[img] Text
vaccines-11-00060.pdf
Available under License Creative Commons Attribution.

Download (468kB)

Abstract

Vaccination coverage in Ecuador has decreased since 2013, falling short of the World Health Organization’s vaccination goal. There are several causes for this deficiency in coverage, one of these are lost vaccination opportunities, which are caused when a patient without contraindications postpones, or for other reasons fails to receive a recommended immunization. The objective of this study was to determine the state of knowledge regarding vaccination contraindications among the Metropolitan District of Quito health personnel to assess missed vaccination opportunities. Through this cross-sectional descriptive study, health personnel were surveyed online and asked 18 clinical scenarios which were created to evaluate their knowledge of the true contraindications of vaccination, and measure missed opportunities. A total of 273 surveys were collected; 74% belonged to the public health system, and the rest represented by private practitioners. Of those surveyed, 98.2% of health personnel had improperly denied vaccination at least once. We specifically found vaccinations were incorrectly denied more frequently in cases where the hypothetical patient presented mild or moderate fever cases. The use of corticosteroids, autoimmune diseases, and egg allergy were also incorrectly denied (89%, 71.4%, 72.9%, and 58.6%, respectively). Among the health personnel surveyed, there is an apparent lack of knowledge of the true contraindications of vaccination and differences in knowledge about contraindications according to personnel in charge of administering immunization to children. Our preliminary results suggest that lack of education related to side effects could be biasing medical professionals’ decisions, causing them to unnecessarily delay or deny vaccinations, which likely contributes to explaining low overall vaccination coverage in Quito, the capital city of Ecuador.

Item Type: Article
Uncontrolled Keywords: health personnel; vaccines; contraindications; knowledge
Subjects: Subjects > Biomedicine
Divisions: Ibero-american International University > Research > Scientific Production
Date Deposited: 11 Jan 2023 23:30
Last Modified: 11 Jan 2023 23:30
URI: https://repositorio.unib.org/id/eprint/5373

Actions (login required)

View Item View Item

<a href="/5397/1/drones-07-00031-v4.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Deep Learning-Based Real Time Defect Detection for Optimization of Aircraft Manufacturing and Control Performance

Monitoring tool conditions and sub-assemblies before final integration is essential to reducing processing failures and improving production quality for manufacturing setups. This research study proposes a real-time deep learning-based framework for identifying faulty components due to malfunctioning at different manufacturing stages in the aerospace industry. It uses a convolutional neural network (CNN) to recognize and classify intermediate abnormal states in a single manufacturing process. The manufacturing process for aircraft factory products comprises different phases; analyzing the components after the integration is labor-intensive and time-consuming, which often puts the company’s stake at high risk. To overcome these challenges, the proposed AI-based system can perform inspection and defect detection and alleviate the probability of components’ needing to be re-manufacturing after being assembled. In addition, it analyses the impact value, i.e., rework delays and costs, of manufacturing processes using a statistical process control tool on real-time data for various manufactured components. Defects are detected and classified using the CNN and teachable machine in the single manufacturing process during the initial stage prior to assembling the components. The results show the significance of the proposed approach in improving operational cost management and reducing rework-induced delays. Ground tests are conducted to calculate the impact value followed by the air tests of the final assembled aircraft. The statistical results indicate a 52.88% and 34.32% reduction in time delays and total cost, respectively.

Producción Científica

Imran Shafi mail , Muhammad Fawad Mazhar mail , Anum Fatima mail , Roberto Marcelo Álvarez mail roberto.alvarez@uneatlantico.es, Yini Airet Miró Vera mail yini.miro@uneatlantico.es, Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Imran Ashraf mail ,

Shafi

en

close

Systematic Review of Machine Learning applied to the Prediction of Obesity and Overweight

Obesity and overweight has increased in the last year and has become a pandemic disease, the result of sedentary lifestyles and unhealthy diets rich in sugars, refined starches, fats and calories. Machine learning (ML) has proven to be very useful in the scientific community, especially in the health sector. With the aim of providing useful tools to help nutritionists and dieticians, research focused on the development of ML and Deep Learning (DL) algorithms and models is searched in the literature. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol has been used, a very common technique applied to carry out revisions. In our proposal, 17 articles have been filtered in which ML and DL are applied in the prediction of diseases, in the delineation of treatment strategies, in the improvement of personalized nutrition and more. Despite expecting better results with the use of DL, according to the selected investigations, the traditional methods are still the most used and the yields in both cases fluctuate around positive values, conditioned by the databases (transformed in each case) to a greater extent than by the artificial intelligence paradigm used. Conclusions: An important compilation is provided for the literature in this area. ML models are time-consuming to clean data, but (like DL) they allow automatic modeling of large volumes of data which makes them superior to traditional statistics.

Producción Científica

Antonio Ferreras mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Rosmeri Martínez-Licort mail , Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Thomas Prola mail thomas.prola@uneatlantico.es, Juan Luis Vidal Mazón mail juanluis.vidal@uneatlantico.es, Benjamín Sahelices mail , Isabel de la Torre Díez mail ,

Ferreras

<a class="ep_document_link" href="/5470/1/education-13-00097.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Integration of Sustainable Criteria in the Development of a Proposal for an Online Postgraduate Program in the Projects Area

Regulatory dispersion and a utilitarian use of sustainability deepen the gap within the teaching–learning process and limit the introduction of sustainable criteria in organizations through projects. The objective of this research consisted in developing a sustainable and holistic educational proposal for an online postgraduate program belonging to the Universidad Europea del Atlántico (UNEATLANTICO) within the field of projects. The proposal was based on the instrumentalization of a model comprised of national and international bibliographic references, resulting in a sustainability guide with significant improvements in relation to the reference standard par excellence: ISO 26000:2010. This guide formed the basis of a sustainability management plan, which was key in the project methodology and during the development of sustainable objectives and descriptors for each of the subjects. Lastly, the entities, attributes, and cardinal relationships were established for the development of a physical model used to facilitate the management of all this information within a SQL database. The rigor when determining the educational program, as well as the subsequent analysis of results as supported by the literature review, presupposes the application of this methodology toward other multidisciplinary programs contributing to the adoption of good sustainability practices within the educational field

Producción Científica

Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Roberto Marcelo Álvarez mail roberto.alvarez@uneatlantico.es, Santiago Brie mail santiago.brie@uneatlantico.es, Yini Airet Miró Vera mail yini.miro@uneatlantico.es, Eduardo García Villena mail eduardo.garcia@uneatlantico.es,

Gracia Villar

en

close

Anthocyanins: what do we know until now?

Diets enriched in plant-based foods are associated with the maintenance of a good well-being and with the prevention of many non-communicable diseases. The health effects of fruits and vegetables consumption are mainly due to the presence of micronutrients, including vitamins and minerals, and polyphenols, plant secondary metabolites. One of the most important classes of phenolic compounds are anthocyanins, that confer the typical purple-red color to many foods, such as berries, peaches, plums, red onions, purple corn, eggplants, as well as purple carrots, sweet potatoes and red cabbages, among others. This commentary aims to briefly highlight the progress made by science in the last years, focusing on some unexpected aspects related with anthocyanins, such as their bioavailability, their health effects and their relationship with gut microbiota

Producción Científica

Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Danila Cianciosi mail , José M. Alvarez-Suarez mail , José L. Quiles mail jose.quiles@uneatlantico.es, Tamara Y. Forbes-Hernández mail , María D. Navarro-Hortal mail , Michele Machì mail , Ramón Pali-Casanova mail ramon.pali@unini.edu.mx, Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Xiumin Chen mail , Di Zhang mail , Weibin Bai mail , Tian Lingmin mail , Bruno Mezzetti mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Yasmany Armas Diaz mail ,

Giampieri

<a class="ep_document_link" href="/5660/1/mathematics-11-00435.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Contextual Urdu Lemmatization Using Recurrent Neural Network Models

In the field of natural language processing, machine translation is a colossally developing research area that helps humans communicate more effectively by bridging the linguistic gap. In machine translation, normalization and morphological analyses are the first and perhaps the most important modules for information retrieval (IR). To build a morphological analyzer, or to complete the normalization process, it is important to extract the correct root out of different words. Stemming and lemmatization are techniques commonly used to find the correct root words in a language. However, a few studies on IR systems for the Urdu language have shown that lemmatization is more effective than stemming due to infixes found in Urdu words. This paper presents a lemmatization algorithm based on recurrent neural network models for the Urdu language. However, lemmatization techniques for resource-scarce languages such as Urdu are not very common. The proposed model is trained and tested on two datasets, namely, the Urdu Monolingual Corpus (UMC) and the Universal Dependencies Corpus of Urdu (UDU). The datasets are lemmatized with the help of recurrent neural network models. The Word2Vec model and edit trees are used to generate semantic and syntactic embedding. Bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent unit (BiGRU), bidirectional gated recurrent neural network (BiGRNN), and attention-free encoder–decoder (AFED) models are trained under defined hyperparameters. Experimental results show that the attention-free encoder-decoder model achieves an accuracy, precision, recall, and F-score of 0.96, 0.95, 0.95, and 0.95, respectively, and outperforms existing models

Producción Científica

Rabab Hafeez mail , Muhammad Waqas Anwar mail , Muhammad Hasan Jamal mail , Tayyaba Fatima mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Ernesto Bautista Thompson mail ernesto.bautista@unini.edu.mx, Imran Ashraf mail ,

Hafeez