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Simple Summary: The study presents a thyroid disease prediction approach which utilizes random
forest-based features to obtain high accuracy. The approach can obtain a 0.99 accuracy to predict
ten thyroid diseases.

Abstract: Thyroid disease prediction has emerged as an important task recently. Despite existing
approaches for its diagnosis, often the target is binary classification, the used datasets are small-sized
and results are not validated either. Predominantly, existing approaches focus on model optimization
and the feature engineering part is less investigated. To overcome these limitations, this study
presents an approach that investigates feature engineering for machine learning and deep learning
models. Forward feature selection, backward feature elimination, bidirectional feature elimination,
and machine learning-based feature selection using extra tree classifiers are adopted. The proposed
approach can predict Hashimoto’s thyroiditis (primary hypothyroid), binding protein (increased
binding protein), autoimmune thyroiditis (compensated hypothyroid), and non-thyroidal syndrome
(NTIS) (concurrent non-thyroidal illness). Extensive experiments show that the extra tree classifier-
based selected feature yields the best results with 0.99 accuracy and an F1 score when used with
the random forest classifier. Results suggest that the machine learning models are a better choice
for thyroid disease detection regarding the provided accuracy and the computational complexity.
K-fold cross-validation and performance comparison with existing studies corroborate the superior
performance of the proposed approach.

Keywords: machine learning; thyroid prediction; forward feature selection; bidirectional feature elimination

1. Introduction

Thyroid disease incidences have been on the rise in recent times. The thyroid gland has
one of the most important functions in regulating metabolism. Irregularities in the thyroid
gland can lead to different abnormalities; two of the most common are hyperthyroidism
and hypothyroidism. A large number of people are diagnosed with thyroid diseases
such as hypothyroidism and hyperthyroidism yearly [1]. The thyroid gland produces
levothyroxine (T4) and triiodothyronine (T3) and insufficient thyroid hormones may lead to
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hypothyroidism and hyperthyroidism [2]. Many approaches are proposed to detect thyroid
disease diagnosis in the literature. A proactive thyroid disease prediction is essential to
properly treat the patient at the right time and save human lives and medical expenses. Due
to the technological advancements in data processing and computation, machine learning
and deep learning techniques are applied to predict the thyroid diagnosis in the early stages
and classify the thyroid disease types hypothyroidism, hyperthyroidism, etc.

Due to the advancement in technologies such as data mining, big data, image and
video processing, and parallel computing, the healthcare domain benefited from lever-
aging technology in many healthcare areas for human well-being [3]. The range of data
mining-based health care applications may include the early detection of diseases and
diagnosis, prediction of virus outbreaks, drug discovery and testing, health care data
management, and patient personalized medicine recommendations, etc. [4]. Health care
professionals strive to identify the diseases in the early stages so that proper treatment can
be provided to the patients and cures the disease within a short time and with less expendi-
ture. Thyroid disease is one of the diseases which impacts a sizeable human population
worldwide. According to the world-leading professional association (American thyroid
association), 20 million Americans have some form of thyroid disease [5]. Twelve percent
of the US population is diagnosed with a thyroid condition at least once in a lifetime. These
statistics signify that thyroid-based disease should not be taken lightly. Improving the
health care practices to detect and prevent thyroid diseases using advanced technologies is
highly desired.

Existing research works predominantly focus on binary classification problems where
the subjects are classified into thyroid patients or health subjects, while multiclass-based
detection works are only a few. Even for those, the focus is on three categories including
normal, hypothyroidism, and hyperthyroidism. For the most part, the emphasis is placed
on the optimization of machine learning and deep learning models and the feature selection
part is under-studied or completely ignored for a thyroid disease problem. Despite the
high accuracy reporting approaches, such approaches are tested on samples under 1000,
and results are not validated. The classification in terms of the patient status like treatment
condition, health condition, and general health issues based categorization is desired to
predict the patient thyroid condition effectively and proactively treat the patient. Moreover,
the performance comparison of machine learning and deep learning models is not carried
out. This study aims at working on these issues and makes the following contributions

• A novel machine learning-based thyroid disease prediction approach is proposed that
focus on the multi-class problem. Contrary to previous studies that focus on the binary
or three-class problem, this study considers a five-class disease prediction problem.

• Four feature engineering approaches are investigated in this study to analyze their
efficacy for the problem at hand. It includes forward feature selection (FFS), backward
feature elimination (BFE), bidirectional feature elimination (BiDFE), and machine
learning-based feature selection using an extra tree classifier.

• For experiments, five machine learning models are selected based on their reported
performance for disease prediction, including random forest (RF), logistic regression,
support vector machine (SVM), AdaBoost (ADA), and Gradient boosting machine
(GBM). Moreover, three deep learning models are adopted as well, which include
convolutional neural network, long short-term memory (LSTM) network, and CNN-
LSTM. Performance is evaluated in terms of confusion matrix, 10-fold cross-validation,
and standard deviation, in addition to accuracy, precision, recall, and F1 score.

The remainder of this article is organized as follows. Section 2 discusses the state-
of-the-art works to detect and classify thyroid diseases. Section 3 presents the proposed
methodology to address the thyroid disease prediction problem. This section also includes
feature selection methods, machine learning techniques used in the article, and dataset
description considered for this study. Section 4 describes the experimental results obtained
in our study and comparison with prior art studies. Section 5 concludes the article with
our contributions.
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2. Literature Review

With recent technological advancements in data processing and computation, machine
learning and deep learning techniques have been used in several research studies for
thyroid disease prediction. Prediction of this disease at its early stages and its classification
into cancer, Hypothyroidism, or Hyperthyroidism is helpful for timely treatment and
recovery. The literature survey is performed using peer-reviewed article databases such as
google scholar and Scopus. The searches were performed within the scope of the last five
years to identify the recent works in our study. The keywords “Thyroid disease”, “Thyroid
cancer”, “machine learning”, and “deep learning” combinations were used to select the
relevant articles. As the number of retrieved results is much more for finding the relevant
articles, we have further tuned the search queries and used a strict keyword search. Overall,
more than 100 relevant articles were identified during our first screening. We further
analyzed those articles and shortlisted 25 articles that are closely relevant to our work.
Machine learning and deep learning methods are used both for thyroid disease detection
and thyroid cancer detection. As the process of applying these methods is different for both
tasks, they are discussed separately.

2.1. Thyroid Cancer Detection

The study [6] leveraged the least absolute shrinkage and selection operator (LASSO)
and LR model to select the malignant thyroid nodule-associated ultrasonic characteris-
tics. Then, RF is applied along with a scoring system to classify the malignant thyroid
nodules. The logistic lasso regression (LLR) with RF obtained the best performance with
82% accuracy. Another study [7] performed machine learning-based prediction of the
BRAF mutation presence in the confirmed cancer thyroid nodules. The authors selected
96 thyroid nodule ultrasonic images for this study. 86 radiomic features were extracted
from the images, and three models, LR, SVM, and RF were applied to predict the presence
of the BRAF mutation. The classification accuracy is reported as 64.3% for all three models.
Idarraga et al. [8] performed machine learning-based thyroid nodule malignancy prediction
using the ultrasonic and fine-needle aspiration (FNA) feature to avoid false-negative diag-
nosis in the early stages of thyroid cancer. The RF technique performed better than other
techniques like decision tree (DT) and gradient descent (GD). All the above-mentioned
works’ performance is not optimal to predict the thyroid cancer diagnosis and still has
room for performance improvement.

2.2. Thyroid Disease Prediction

Several thyroid disease detection and classification approaches have been presented
in the literature. For example, Garcia et al. [9] predicted the high probable molecules
initiating the thyroid hormone homeostasis using machine learning algorithms RF, LR,
GBM, SVM, and deep neural networks (DNN). The early prediction of the molecules is
helpful for further testing in the first stages of thyroid disease. The molecular events were
obtained from ToxCast datasets for running the experiments. The article reported that
Thyroid Peroxidase (TPO) and Thyroid Hormone receptor (TR) achieved the best predictive
performance with an F1 score of 0.83 and 0.81, respectively. The authors in [10] utilized the
image processing techniques and feature selection methods to pick the important features
from the dataset and achieve the best performance for thyroid disease prediction.

The thyroid disease classification is also a significant problem to be solved in the
health industry. Razia et al. [11] compared the performance of various machine learning
algorithms to classify Thyroid disease into normal, Hypothyroidism, or hyperthyroidism
categories. The authors obtained the datasets from the University of California Irvine
(UCI) machine learning library. The dataset contains 7200 samples, and each sample has
21 attributes. The authors reported that DT outperformed the SVM, NB, and multilinear
regression (MLR) with 99.23%. However, multi-classification is limited to three categories,
and limited information is provided on data preprocessing to assess the applicability of the
results for real-time datasets. A multi-kernel SVM is proposed in the paper [12] to classify
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thyroid diseases. The authors mentioned that the multi-kernel SVM achieved 97.49%
performance accuracy on UCI thyroid datasets. The improved gray wolf optimization
performs the feature selection and enhances the performance.

A study [13] performed multiclass hypothyroidism using selective features and ma-
chine learning algorithms. Hypothyroidism is classified into four categories. The results
show that RF performed well with 99.81% accuracy compared to the SVM, KNN, and DT
algorithms. However, the authors did not mention the performance of their proposed
methodology for thyroid disease classification. Another study [14] tested three feature
selection methods along with SVM, DT, RF, LR, and Naive Bayes (NB) to make early pre-
dictions for hypothyroidism. Three feature selection methods, recursive feature selection
(RFE), univariate feature selection (UFS), and principal component analysis (PCA), are
tested in combination with ML algorithms. The RFE combination with ML algorithms
performed better than other feature selection methods. All the five ML algorithms obtained
99.35% accuracy when combined with RFE feature selection. However, the data sample
size is very small, with only 519 records. A large-scale dataset is needed to evaluate the
effectiveness of their method.

The authors [15] evaluated the performance of the thyroid disease classification using
various machine learning algorithms. SVM, RF, DT, NB, LR, K nearest neighbor (KNN),
and MLP are used for disease prediction. A dataset sample of 1250 is taken from hospitals
and laboratories in Iraq. The MLP predicted the thyroid classification with 96.4% accuracy.
However, there is still room for performance improvement. Hosseinzadeh et al. [16]
proposed a multiple multi-layer perception (MMLP) technique to classify thyroid diseases.
When the MMLP is applied along with a set of six networks, the accuracy is improved by
0.7% compared to a single MLP. Although MMLP obtained 99% classification accuracy on
large dataset samples, training deep learning techniques like MMLP is costly and needs
high computational resources to train faster. The KNN with various distance functions
is implemented to test the thyroid disease detection in [17]. The chi-square and L1-based
featured selection methods were used to select the optimal features before applying the
KNN with Euclidean and Cosine distances. The authors reported that KNN obtained
promising results. However, the tested sample size is very small, with 590 samples in total.

Mishra et al. [18] applied the ML techniques sequential minimal optimization (SMO),
DT, RF, and K-star classifier to predict hypothyroid disease. A sample size of unique
3772 records is considered for this study. The authors reported that RF and DT performed
better than the other two techniques, with accuracy scores of 99.44% and 98.97%. However,
the authors did not consider hyperthyroid predication. Alyas et al. [19] performed a
comparative analysis of the machine learning techniques DT, RF, KNN, and artificial neural
network (ANN) to detect thyroid disease. The tests were conducted on the largest dataset
and considered both sampled and unsampled data for thyroid disease prediction. RF
obtained the best prediction with 94.8% accuracy. However, the authors did not perform
the thyroid disease type prediction tests. Researchers also applied deep learning models
to predict thyroid disease classification. For instance, the authors [20] used a deep neural
network (DNN) to predict the thyroid disease classification. The performance evaluation is
done on the UCI dataset of 3152 unique samples. The authors reported 99.95% accuracy
when using DNN to classify thyroid disease. However, a large dataset is required to train
the model for performance evaluation properly. Additionally, more computing resources
are needed to train the deep learning models.

Table 1 provides the comparative analysis of the existing works discussed in this
section. Various datasets are used in the literature to evaluate the performance of thyroid
disease detection. However, most of the datasets given in Table 1 are not standard datasets
for performance evaluation and comparison with the existing work. Therefore, we elected
a well-known UCI dataset for our study. Although tremendous work has been done in the
above studies with high accuracy results to detect and classify thyroid disease, detailed
research on the feature selection is not well explored for thyroid disease classification
problems. Besides, the performance results reported in the context of thyroid disease classi-
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fication accuracy are insufficient, and there is still scope for improvement. Furthermore, all
the prior works classify thyroid problems into three categories (normal, hypothyroidism,
or hyperthyroidism). The classification in terms of the patient status like treatment condi-
tion, health condition, and general health issues based categorization is desired to predict
the patient thyroid condition effectively and proactively to treat the patient. Moreover,
the detailed evaluation of the machine learning and deep learning-based techniques for
thyroid disease classification and their performance comparison is not well discussed in
the state-of-the-art. So, we propose a feature selection-based, highly accurate, multiclass
supportive thyroid disease classification solution to overcome those limitations and provide
a detailed performance comparison of machine learning and deep learning-based solutions.

Table 1. Summary of the systematic analysis of the state-of-the-art thyroid disease studies.

Authors Year Sample Size Dataset Source Model Classes Evaluation Metrics Results

[9] 2020 - ToxCast LR RF SVM XGB ANN 2 F1-score (TPO) XGB-83% and
(TR) RF-81%

[11] 2018 7200 samples,
21 attributes UCI SVM, Multiple Linear Re-

gression(MLR), NB and DT 2 Accuracy
MLR 91.59% SVM 96.04%
Naive Bayes 6.31% Decision
Trees 99.23%

[12] 2020 7547, 30 features UCI multi-kernel SVM 3 Accuracy, Sensitiv-
ity, and Specificity

Accuracy (97.49%), Sensitivity
(99.05%), and Specificity (94.5%)

[13] 2021 3771 samples,
30 attributes UCI DT, KNN, RF, and SVM 4 Accuracy KNN 98.3% SVM 96.1% DT

99.5% RF 99.81%

[14] 2021 519 samples
diagnostic
center Dhaka,
Bangladesh

SVM, DT, RF, LR, and NB.
Recursive Feature Selection
(RFE), Univariate Feature
Selection (UFS) and PCA

4 Accuracy RFE, SVM, DT, RF, LR
accuracy—99.35%

[15] 2021 1250 with
17 attributes

external hospitals
and laboratories

SVM,RF, DT, NB, LR, KNN,
MLP, linear discriminant
analysis (LDA) and DT

3 Accuracy
DT 90.13, SVM 92.53 RF 91.2
NB 90.67 LR 91.73 LDA 83.2
KNN 91.47 MLP 96.4

[16] 2021 7200 patients,
with 21 features UCI multiple MLP 3 Accuracy multiple MLP 99%

[17] 2021 690 samples,
13 features

datasets from KEEL
repo and District
Headquarters
teaching hospital,
Pakistan

KNN without feature selec-
tion, KNN using L1-based
feature selection, and KNN
using chi-square-based fea-
ture selection

3 Accuracy KNN 98%

[18] 2021 3772 and
30 attributes UCI

RF, sequential minimal opti-
mization (SMO), DT, and K-
star classifier

2 Accuracy K = 6, RF 99.44%, DT 98.97%,
K-star 94.67%, and SMO 93.67%

[19] 2022 3163 UCI DT, RF, KNN, and ANN 2 Accuracy Best performance Accuracy
RF 94.8%

[21] 2022 215 with
5 features UCI KNN, XGB,LR, DT 3 Accuracy KNN 81.25 XGBoost 87.5

LR 96.875 DT 98.59

[20] 2022 3152, 23 features UCI DNN 2 Accuracy Accuracy 99.95%

3. Proposed Methodology

Figure 1 shows the architecture and flow of the proposed approach for thyroid disease
prediction. First, we acquired the disease dataset from UCI (a famous data repository).
The dataset consists of several thyroid-related disease records and many target classes. The
samples for target classes are few, which are not enough to train models, so we select only
those target classes whose samples are more than 250, as a result, we got five target classes.
After selecting the target classes for experiments, we performed the data balancing. Normal
class samples were 6771 in total, which is more compared to other target class samples, so
we randomly selected only 400 samples for the normal class to make dataset balance. It
is followed by the feature selection process, where many feature selection techniques are
applied. Experiments are performed with an 80–20 train–test split using several machine
learning and deep learning models.
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Figure 1. Flow of the proposed methodology.

3.1. Dataset Acquisition

The datasets created for our study are obtained from the UCI thyroid disease datasets.
The UCI machine learning repository maintains a variety of thyroid disease datasets [22].
The dataset contains 9172 sample observations and each sample is represented by 31 features.
Table 2 presents the dataset description of the UCI thyroid dataset.

Table 2. Dataset description.

Features Sample Count

31 9172

The target classification contains health conditions and diagnosis classes. The im-
portance of the features should be estimated to elect the optimum number of features for
thyroid disease classification. As we can see in Table 3, the 31 features include Boolean, float,
int, and string types. The feature-based analysis is performed to estimate the importance of
the features.

Table 4 shows the dataset thyroid health condition state and the diagnosis class.
The class counts clearly show that the dataset is highly imbalanced. For instance, most
of the samples in the dataset do not belong to any particular class. Therefore, the data
preprocessing is performed to obtain the standard dataset for our performance evaluation.
As described in the proposed methodology subsection, the feature selection and feature
preprocessing yield the balanced thyroid disease classification dataset. The majority of the
classification count is categorized as “no condition”. The “no condition” means that the
data sample is not categorized as any other classes like hyperthyroid, hypothyroid, binding
proteins, general health, replacement therapy, antithyroid treatment, or miscellaneous.
The patients classified as “no condition” means normal patients who do not have thyroid
disease. On the other hand, concurrent non-thyroidal illness is commonly seen in critically
ill patients with chronic illness, and the serum thyroid levels change due to the chronic
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illness. The non-thyroidal illness may occur in the absence of hypothalamic-pituitary-
thyroid primary dysfunction [23].

Table 3. Data sample attribute Types.

Attribute Description Data Type

age age of the patient (int)

sex sex patient identifies (str)

on_thyroxine whether patient is on thyroxine (bool)

query on thyroxine whether patient is on thyroxine (bool)

on antithyroid meds whether the patient is on antithyroid meds (bool)

sick whether patient is sick (bool)

pregnant whether patient is pregnant (bool)

thyroid_surgery whether patient has undergone thyroid surgery (bool)

I131_treatment whether patient is undergoing I131 treatment (bool)

query_hypothyroid whether the patient believes they have hypothyroid (bool)

query_hyperthyroid whether the patient believes they have hyperthyroid (bool)

lithium whether patient * lithium (bool)

goitre whether patient has goitre (bool)

tumor whether patient has tumor (bool)

hypopituitary whether patient * hyperpituitary gland (float)

psych whether patient * psych (bool)

TSH_measured whether TSH was measured in the blood (bool)

TSH TSH level in blood from lab work (float)

T3_measured whether T3 was measured in the blood (bool)

T3 T3 level in blood from lab work (float)

TT4_measured whether TT4 was measured in the blood (bool)

TT4 TT4 level in blood from lab work (float)

T4U_measured whether T4U was measured in the blood (bool)

T4U T4U level in blood from lab work (float)

FTI_measured whether FTI was measured in the blood (bool)

FTI FTI level in blood from lab work (float)

TBG_measured whether TBG was measured in the blood (bool)

TBG TBG level in blood from lab work (float)

referral_source (str)

target hyperthyroidism medical diagnosis (str)

patient_id unique id of the patient (str)

The dataset consists of 9173 patient records. The 6771 records are normal patient records
and do not show any sign of thyroid disease. The other notable patient condition records
include 233 primary hypothyroid, 359 compensated hypothyroid patients, 346 patients with
increasing binding proteins, and 456 concurrent non-thyroidal illness patients.

Table 5 displays the dataset target classification categories and the sample counts
for each category. A 400 sample count was randomly picked from a pool of 6771 normal
category sample records to balance the dataset. The other categories such as increased
binding protein, primary hypothyroid, compensated hypothyroid, and concurrent non-
thyroidal illness counts remain unchanged. Since the number of samples for each class is
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not the same, we performed the dataset balancing by randomly selecting 400 samples for
the normal class while other classes with at least 200 samples are selected. The balanced
dataset is shown in Table 5 and samples of the dataset are shown in Table 6.

Table 4. Description of the class-wise target.

Condition Diagnosis class Count

hyperthyroid

hyperthyroid (A) 147

T3 toxic (B) 21

toxic goiter (C) 6

secondary toxic (D) 8

hypothyroid

hypothyroid (E) 1

primary hypothyroid (F) 233

compensated hypothyroid (G) 359

secondary hypothyroid (H) 8

binding protein:
increased binding protein (I) 346

decreased binding protein (J) 30

general health concurrent non-thyroidal illness (K) 436

replacement therapy:

underreplaced (M) 111

consistent with replacement therapy (L) 115

overreplaced (N) 110

antithyroid treatment:

antithyroid drugs (O) 14

I131 treatment (P) 5

surgery (Q) 14

miscellaneous:

discordant assay results (R) 196

elevated TBG (S) 85

elevated thyroid hormones (T) 0

no condition (-) 6771

Table 5. Balanced dataset for Thyroid disease classification.

Class Prepossessed Count Final Count

Normal 6771 400

primary hypothyroid 233 233

increased binding protein 346 346

compensated hypothyroid 359 359

concurrent non-thyroidal illness 436 436

A blood test is one of the ways to diagnose hypothyroidism, but after a lab blood
test, a medical expert needs to examine the test stats of hormones and other parameters
of the patient to diagnose the disease. There is very little difference in the blood test stats,
which refer to different thyroid hormone levels. Table 6 shows the data for three target
classes and we can see there is a very small difference in some features for two different
target classes. Such minor differences can lead to the wrong diagnosis even by medical
experts as human error is expected. Incorrect diagnosis may lead to wrong medication
and further complexities. So, an automated system can be very helpful to assist medical
experts and even make automated disease predictions without any human mistakes. So,
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this study follows a machine learning approach to make automatic predictions for different
thyroid diseases.

Table 6. Sample of dataset.

age sex on_thyroxine query_on_thyroxine on_antithyroid_meds sick pregnant thyroid_surgery

29 F f f f f f f

71 F t f f f f f

61 M f f f t f f

88 F f f f f f f

I131_treatment query_hypothyroid query_hyperthyroid lithium goitre tumor hypopituitary psych

f t f f f f f f

f f f f f f f f

f f f f f f f f

f f f f f f f f

TSH_measured TSH T3_measured T3 TT4_measured TT4 T4U_measured T4U

t 0.3 f f f

t 0.05 f t 126 t 1.38

t 9.799999 t 1.2 t 114 t 0.84

t 0.2 t 0.4 t 98 t 0.73

FTI_measured FTI TBG_measured TBG referral_source target patient_id

f f other - 8.41× 108

t 91 f other I 8.41× 108

t 136 f other G 8.41× 108

t 134 f other K 8.41× 108

3.2. Feature Selection

The dataset consists of 30 features and some features are not important for the good-fit
of learning models to improve the performance of machine learning models, as shown
in Figure 2. We deployed several feature selection techniques such as forward feature
selection, backward feature elimination, bi-directional elimination, and machine learning
feature selection. These techniques help to extract the important features from the dataset
to train the machine learning models.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
Number of Features

0.30

0.35

0.40

0.45

0.50

Pe
rfo

rm
an

ce

Figure 2. Feature impact on models performance.
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In machine learning, feature selection is crucial to designing a good model and ob-
taining the best model performances [24]. The redundant and undesired features may
need to be removed from the original datasets to train the model faster, easily interpret
the data, and avoid overfitting problems. We have considered the wrapper method for
feature selection, as determining the right set of features for thyroid disease classification is
essential. The feature selection is based on the specific ML algorithm used to fit the dataset
in the wrapper method. A greedy selection method selects the combination of feature
sets and evaluates the performance of the feature set combinations against the evaluation
criteria. The evaluation criteria may include metrics such as p-value, accuracy, F1-score,
etc., to assess the performance of feature set combinations. The detailed description of
the selected four feature selection techniques and machine learning feature selection is
as follows.

3.2.1. Forward Feature Selection

In FFS [25], we start with a null model and then try to fit the model with each feature
value. The feature with a low p-value is selected for the next round. Then, we start
fitting the model with two feature combinations. The minimum p-value feature set in the
first round should be the one feature candidate when fitting the models with two feature
combinations. The low p-value of two features is considered for fitting the model with
three feature combinations. This process is repeated until the minimum p-value for each
feature in the feature set is less than the significance level.

Step 1: Choose the significance level value (S) and start with null set [26].

Y0 = {φ} (1)

Step 2: Select the first feature using some criteria. For example, pick a random feature
from the list of features. The below equation represents the selection of minimum
p-value feature selection out of all the features used for selection.

X+ = arg max
x/∈Yk

J(Yk + x) (2)

Step 3: The identified minimum p-value feature is updated to the list of all the existing
minimum p-value features. The iteration k value is incremented by 1. At this
point, repeat, go back to step 2, and continue the process until all the feature’s
p-value is less than the Significance level. The iterative process stops when
Yk < S and the k value is the total number of features.

Yk = Yk + X+; k = k + 1 (3)

This study deploys the FFS due to its wide adaptation in the existing literature. It is
applied by passing the original dataset. FFS is deployed with a significance level of 0.05
with 95% confidence.

3.2.2. Backward Feature Elimination

In BFE, we start with a model with all the features. The highest p-value feature is
selected to be removed from the model and then fit the model. The removed feature p-value
must be greater than the significance level value. This process is repeated until all the
high p-value features are eliminated from the model while ensuring that all the eliminated
features p-value greater than the significance level. By the end of this process, the final
set of the existed features are the most relevant and valuable features used for accurate
detection and classification.

Step 1: Start with all features to fit the model.

Y0 = X (4)
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Step 2: Identify the high p-value feature from the feature list. The high p-value feature
is compared with the significance level value (S). The condition x > S should be
satisfied to consider the feature for elimination [26].

X− = arg max
x∈Yk

J(Yk − x) (5)

Step 3: The high p-value is removed from the list and goes back to step 2 to perform the
next iteration (k + 1) feature elimination. When the k value is zero, the final list
of features represents the selected feature list using BFE.

Yk−1 = Yk − X−; k = k + 1 (6)

BFE is another widely used feature selection approach in the literature. BFE technique
is deployed with a significance level of 0.05 with a 95% confidence.

3.2.3. Bi-Directional Elimination

The BiDFE method combines the forward feature selection and backward feature
elimination methods. This method is similar to forward feature selection. But, when
the new feature is selected, the backward elimination process kicks it to compare it with
previously selected features. Suppose any previously chosen features with a p-value
is greater than the defined significance level ‘out’ value is eliminated. In this method,
two significance level values should be determined with ‘in’ and ‘out’ of value ranges.
The feature p-value should be less than the significance level inner value to include in the
feature selection and greater than the significance level outer value to exclude the feature
from the feature list.

Step 1: We start with an empty set. Initially, a feature is selected based on the defined
criteria. We use the forward feature selection to include the features in the
list [26].

YF = {φ}; YB = X (7)

Step 2: The next best feature is selected using the p-value comparison. A typical forward
feature selection process is followed to select the essential features.

X+ = arg max
x/∈YFk
x∈YBk

J(YFk + x); (8)

YFk+1 = YFk + X+; (9)

Step 3: The next best feature is selected using the p-value comparison. A typical forward
feature selection process is followed to choose the next feature; then backward
feature elimination process kicks in to eliminate any selected features that are
unimportant. We can go back to step 2 to repeat this process and continue until
the k value reaches the total number of features count.

X− = arg max
x∈YBk

x/∈YFk+1

J(YBk − x); (10)

YBk+1 = YBk − X−; k = k + 1 (11)

BiDFE is deployed with significance level in = 0.05, significance level out = 0.05,
and 95% confidence.
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3.2.4. Machine Learning Feature Selection

Machine learning-based methods, especially ensemble techniques, are used to select
the essential features. We have considered the extra tree classifier technique as one of the
feature selection methods in this work [27,28]. The extra tree classifier randomly constructs
multiple decision trees using the training dataset. The splitting of the nodes in the decision
tree is followed by either the Gini index or entropy criteria. The Equation (12) is used to
measure the entropy. The value c indicates the unique class labels, and the pi is the fraction
of the rows containing the label i in the dataset.

Entropy(E) = −ΣC
i=1 pi log2(pi) (12)

Entropy measures the information about the disorder of the features with the target.
We have considered the entropy criteria in our feature selection process. The entropy of
obtained features from each decision is determined, and the cumulative entropy values
for each feature are used to find the important features. The set of high entropy features
is considered to be the shortlisted features. Figure 3 shows the features’ importance
using MLFS.

For MLFS, we used an ETC classifier with n_estimators = 200, max_depth = 20, which
found the importance of each feature and ranked them, then we selected the score > 0.015
importance features for learning models training.
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Figure 3. Feature Importance using MLFS.

3.3. Machine Learning Models

This study employs several machine learning models for thyroid disease detection. RF,
LR, SVM, ADA, and GBM are applied to the problem at hand. These models are fine-tuned
to optimize their performance. For that, several hyperparameters are optimized. Details of
hyperparameter settings of the models are given in Table 7.
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Table 7. Target class count for training and testing sets.

Class Hyper-Parameters Tuning Range

LR solver = liblinear, C = 5.0 solver = {liblinear,saga, sag}, C = {1.0 to 8.0}

SVM kernel = ’linear’, C = 5.0 kernel = {‘linear’, ‘poly’, ‘sigmoid’} C = {1.0 to 8.0}

RF n_estimators = 200, max_depth = 20 n_estimators = {10 to 300}, max_depth = {2 to 50}

GBM n_estimators = 200, max_depth = 20, learning_rat = 0.5 n_estimators = {10 to 300}, max_depth = {2 to 50}, learning_rat = {0.1 to 0.9}

ADA n_estimators = 200, max_depth = 20, learning_rat = 0.5 n_estimators = {10 to 300}, max_depth = {2 to 50}, learning_rat = {0.1 to 0.9}

4. Results and Discussion

This section presents the details of experiments on thyroid disease prediction using
machine learning. We discuss the results with each feature selection technique using
machine learning and deep learning models. We split the dataset into training and testing
sets with an 80:20 ratio, where we used 80% of the data for model training and 20% of the
data for model testing. The ratio of the target with respect to each target class is shown
in Table 8.

Table 8. Number of samples for training and test subset.

Target Class Training Testing Total

“_” (0) 325 75 400

F (1) 190 43 233

G (2) 280 79 359

I (3) 271 75 346

K (4) 353 83 436

After data splitting, we used several machine learning and deep learning models with
their best hyperparameter settings. Models are trained with important features selected
by feature selection techniques and then evaluated using 20% test data and 10-fold cross-
validation techniques. We evaluate models in terms of accuracy, precision, recall, F1 score,
confusion matrix, and standard deviation (SD).

4.1. Results Using Original Feature Set

Table 9 shows the results of machine learning models using the original feature set.
Models perform well in terms of all evaluation parameters such as tree-based models RF,
GBM and ADA are good with 0.98, 0.97, and 0.97 accuracy scores, respectively. The tree-
based ensemble can perform better even on the small feature set and small size of the
dataset. While linear models such as LR and SVM are poor in performance because of
the small size of the feature set and dataset. LR and SVM both show similar performance,
each with a 0.85 accuracy score. Overall, RF is good with the original dataset in terms of
accuracy score in comparison with all other used models.

Table 9. Results of machine learning models using original feature set.

Model Accuracy Precision Recall F1 Score

RF 0.98 0.98 0.98 0.98

GBM 0.97 0.98 0.98 0.98

ADA 0.97 0.97 0.97 0.97

LR 0.85 0.85 0.85 0.85

SVM 0.85 0.85 0.85 0.85
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4.2. Performance of Models with FFS

Models’ performance using FFS is shown in Table 10 and according to the results, only
SVM improves its performance from 0.85 to 0.92 because, with the selected feature, data
become more linearly separable, which helps SVM to draw hyperplane with a good margin
to classify the data. The tree-based model ADA drops its accuracy from 0.97 to 0.93 and
LR drops from 0.85 to 0.83 accuracy because they require a large feature set for a good fit.
Overall, FFS does not help to improve models’ performance, so we try models with other
feature selection approaches. Figure 4a–e show the confusion matrix with all approaches.
RF gives a total of 344 correct predictions out of 355 predictions and 11 wrong predictions
using FFS as shown in Figure 4b.

Table 10. Performance of machine learning models using FFS feature set.

Model Accuracy Precision Recall F1 Score

RF 0.97 0.97 0.96 0.96

GBM 0.97 0.97 0.96 0.96

ADA 0.93 0.92 0.92 0.92

LR 0.83 0.83 0.82 0.82

SVM 0.92 0.92 0.92 0.92
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Figure 4. Feature space using different feature selection methods.

4.3. Results Using BFE Features

Table 11 shows the results of machine learning models using the BFE technique.
Results indicate that reducing the feature set size also reduces the performance of learning
models. All models drop their accuracy score and other evaluation scores with BFE
techniques which shows that the selected features by BFE are not suitable for models
good-fit because, with this feature set, data are not linearly separable, as shown in Figure 5.
RF gives a total of 346 correct predictions out of 355 predictions and 9 wrong predictions
using BFE, as shown in Figure 4c.
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Table 11. Results using BFE feature set with machine learning models.

Model Accuracy Precision Recall F1 Score

RF 0.96 0.96 0.95 0.95

GBM 0.92 0.92 0.91 0.91

ADA 0.83 0.84 0.83 0.83

LR 0.83 0.83 0.82 0.82

SVM 0.92 0.92 0.92 0.92
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Figure 5. Feature Space using Different Feature Selection Methods. (a) ML. (b) Forward Feature
Selection (FFS). (c) Backward Feature Elimination (BFE). (d) Bi-Directional Feature Elimination
(BiDFE). (e) Original.

4.4. Models’ Performance Using BiDFE Features

Table 12 shows the performance of machine learning models using BiDFE. All models
are good with BiDFE in comparison with FFS and BFE feature selection techniques. RF
achieved a significantly better accuracy of 0.98 and GBM is just behind the RF with a
0.96 accuracy. LR and ADA are poor in accuracy scores which shows that it is not effective
for those models as they require a large feature set. RF gives a total of 347 correct predictions
out of 355 predictions and 8 wrong predictions using BiDFE, as shown in Figure 4c.

4.5. Performance of Models Using MLFS Features

Models’ performance using the ML feature selection technique is shown in Table 13.
Models are significant with this approach as RF achieved the highest accuracy of this
study 0.99 with MLFS. Other models such as GBM also achieved their highest accuracy of
0.98 and LR has a 0.87 accuracy score which shows the significance of MLFS. The models’
performance is significant with MLFS because this technique selects the feature based on
how much a feature is correlated to its target. High correlation means more important
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features. This significance of MLFS selects a small but efficient feature set to train machine
learning models. RF gives a total of 350 correct predictions out of 355 predictions and five
wrong predictions using the MLFS technique, as shown in Figure 4e.

Table 12. Performance of models using BiDFE feature set.

Model Accuracy Precision Recall F1 Score

RF 0.98 0.98 0.98 0.98

GBM 0.96 0.96 0.96 0.96

ADA 0.84 0.87 0.85 0.84

LR 0.81 0.83 0.81 0.81

SVM 0.92 0.92 0.92 0.92

Table 13. Performance of models using MLFS feature set.

Model Accuracy Precision Recall F1 Score

RF 0.99 0.99 0.99 0.99

GBM 0.98 0.98 0.98 0.98

ADA 0.97 0.97 0.97 0.97

LR 0.87 0.88 0.87 0.87

SVM 0.92 0.92 0.92 0.92

4.6. K-Fold Cross-Validation for Models

We also evaluate all models in terms of 10-fold cross-validation to show the significance
of the proposed approach for thyroid disease prediction. Table 14 shows the results of
models with all feature selection techniques. Models with MLFS outperformed those
with 10-fold cross-validation, such as RF achieved a significant 0.94 accuracy with 0.01 SD
and SVM achieved 0.91 accuracy with 0.13 SD. This shows the significance of MLFS as
compared to other feature selection techniques. Table 14 also shows the computational
cost of machine learning models in terms of time (seconds). In a significant approach,
RF+MLFS computational time is only 1.689 s. LR has the lowest computational cost, but its
low accuracy score makes it inefficient to be used for thyroid disease prediction. SVM is a
much more expensive choice in terms of computational cost and its accuracy is also low as
compared to tree-based models. RF is best in terms of computational time and accuracy
score, which make it significant for the proposed approach.

4.7. Deep Learning Models Results

The performance of deep learning models is also evaluated on the used dataset with
each feature selection technique. We used several deep learning models in comparison
with machine learning models such as LSTM, CNN, and CNN-LSTM. These models are
used with state-of-the-art architectures, as shown in Table 15.

Deep learning models are designed with different numbers of layers, dropout layer
position, number of neurons, and activation functions. Each model is trained using the
‘categorical_crossentropy’ loss function, while the ‘Adam’ optimizer is used. The models
are trained with a 16 bath and 100 epochs are used for training. Figures 6–8 show the per
epochs evaluation score for each model using each feature selection technique.
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Table 14. Results of 10-fold cross-validation.

Feature Model Accuracy SD Time

Original

RF 0.94 +/−0.10 1.689

GBM 0.93 +/−0.13 3.831

ADA 0.93 +/−0.08 1.758

LR 0.84 +/−0.13 0.330

SVM 0.88 +/−0.12 243.126

FS

RF 0.93 +/−0.10 0.440

GBM 0.90 +/−0.14 1.349

ADA 0.89 +/−0.08 0.743

LR 0.78 +/−0.13 0.330

SVM 0.90 +/−0.15 210.65

BE

RF 0.93 +/−0.11 0.601

GBM 0.90 +/−0.14 1.380

ADA 0.87 +/−0.07 0.635

LR 0.78 +/−0.13 0.111

SVM 0.90 +/−0.15 173.80

BiDFE

RF 0.93 +/−0.03 0.677

GBM 0.90 +/−0.02 8.733

ADA 0.89 +/−0.06 0.617

LR 0.78 +/−0.06 0.111

SVM 0.90 +/−0.04 42.496

ML FS

RF 0.94 +/−0.01 1.689

GBM 0.93 +/−0.13 3.831

ADA 0.93 +/−0.08 1.758

LR 0.84 +/−0.13 0.330

SVM 0.91 +/−0.13 365.51

Table 15. Architecture of deep learning models.

Model Hyperparameters

LSTM

Embedding (4000, 100, input_length = . . . )
Dropout (0.5)
LSTM (128)
Dense (5, activation = ‘softmax’)

CNN

Embedding (4000, 100, input_length = . . . )
Conv1D (128, 5, activation = ‘relu’)
MaxPooling1D (pool_size = 5)
Activation (‘relu’)
Dropout (rate = 0.5)
Flatten()
Dense (5, activation = ‘softmax’)

CNN-LSTM

Embedding (4000, 100, input_length = . . . )
Conv1D (128, 5, activation = ‘relu’)
MaxPooling1D (pool_size = 5)
LSTM (100)
Dense (5, activation = ‘softmax’)

loss = ‘categorical_crossentropy’, optimizer = ‘adam’,
epochs = 100, batch_size = 16
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Figure 6. Deep learning models per epochs evaluation scores using original features and MLFS.
(a) CNN Accuracy using Original Features, (b) CNN Loss using Original Features, (c) CNN-LSTM
Accuracy using Original Features, (d) CNN-LSTM Loss using Original Features, (e) LSTM Accuracy
using Original Features, (f) CNN Loss using Original Features, (g) CNN Accuracy using MLFS,
(h) CNN Loss using MLFS, (i) CNN-LSTM Accuracy using MLFS, (j) CNN-LSTM Loss using MLFS,
(k) LSTM Accuracy using MLFS, and (l) LSTM Loss using MLFS.
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Figure 7. Deep learning models per epochs evaluation scores using BiDFE and BFE. (a) CNN accuracy
using BFE, (b) CNN loss using BFE, (c) CNN-LSTM accuracy using BFE, (d) CNN-LSTM loss using
BFE, (e) LSTM accuracy using BFE, (f) LSTM loss using BFE, (g) CNN accuracy using BiDFE, (h) CNN
loss using BiDFE, (i) CNN-LSTM accuracy using BiDFE, (j) CNN-LSTM loss using BiDFE, (k) LSTM
accuracy using BiDFE and (l) LSTM loss using BiDFE.
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Figure 8. Deep learning models per epochs evaluation scores using FFS. (a) CNN accuracy using
FFS, (b) CNN loss using FFS, (c) CNN-LSTM accuracy using FFS, (d) CNN-LSTM loss using FFS,
(e) LSTM accuracy using FFS and (f) LSTM loss using FFS.

Overall the performance of deep learning models is not as good as machine learning
models because of the small feature set size. Deep learning models require a large feature
set for a good fit. Table 16 shows the results of all deep learning models and significant
results with both the original feature set and MLFS. The original set is large, which is
the reason CNN achieved a 0.93 accuracy score while MLFS is significant and CNN-
LSTM achieved 0.92 accuracy with these features. Machine learning models are good in
performance because they do not require a large feature set, while deep learning requires a
large feature set.

Table 16. Deep learning models results with each feature selection technique.

Feature Model Accuracy Precision Recall F1 Score

Original

LSTM 0.84 0.84 0.83 0.83

CNN 0.93 0.94 0.92 0.93

CNN-LSTM 0.90 0.90 0.88 0.88

FS

LSTM 0.62 0.63 0.59 0.59

CNN 0.86 0.87 0.84 0.85

CNN-LSTM 0.77 0.78 0.73 0.74

BE

LSTM 0.57 0.61 0.54 0.54

CNN 0.86 0.87 0.84 0.84

CNN-LSTM 0.86 0.87 0.84 0.85

BiDFE

LSTM 0.83 0.83 0.80 0.80

CNN 0.85 0.84 0.81 0.82

CNN-LSTM 0.87 0.88 0.84 0.86

ML FS

LSTM 0.57 0.63 0.54 0.55

CNN 0.89 0.89 0.87 0.88

CNN-LSTM 0.92 0.91 0.91 0.91
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Table 17 shows the computational cost of deep learning models. Computational time
taken by deep learning models is more as compared to machine learning models, while
accuracy is low of deep learning models as compared to machine learning models. Overall,
all results and analysis show that machine learning models are better in terms of both
accuracy and efficiency. This is because of the small feature set and small dataset.

Table 17. Deep learning models computational time.

Model FFS BFE BiDFE MLFS Original

LSTM 44.975 87.842 98.067 66.361 170.28

CNN 83.088 37.796 131.48 30.852 56.436

CNN-LSTM 150.53 65.992 214.96 47.922 97.662

4.8. Limitations of Current Study

We analyze that the feature selection technique can be effective in improving the
results, but it also reduces the size of data which is not good for linear models. This small
feature set after the selection of important features is a limitation of this study. Another
limitation is the small size of data which is not enough to train deep learning models. We
worked on a few target classes because of fewer samples available for other target classes,
which is also a limitation of this study; however, existing literature often considers only
three classes, while this study uses five target classes. We will consider all these limitations
in our future work to improve thyroid disease prediction accuracy and efficiency.

4.9. Comparison with Other Studies

To show the significance of our proposed approach, we have made a comparison
with existing studies. We select recent studies that worked on disease prediction using
categorical or numerical datasets. We deployed the proposed approaches on our used
dataset and evaluated the previous studies’ models in terms of accuracy and F1 score.
We did not deploy the feature selection approach with these previous studies; we just
deployed their approach and experiments on our used dataset. We deployed study [19]
which used RF for the thyroid disease prediction. Similarly, we deployed study, [21] which
used DT for thyroid disease prediction. Another study [20] is used, which worked on
thyroid disease and proposed DNN. Similarly, we deployed the approach proposed in [29]
as they worked for the heart disease dataset using a similar type of dataset. The proposed
CNN to extract the feature and proposed a hybrid model using three machine learning
models stochastic gradient descent classifier, LR, and SVM. We deployed that approach on
our dataset also. In comparison with all other studies, our approach performs significantly
better as it achieves 0.99 scores in terms of all evaluation parameters. Table 18 shows the
comparison between our approach and other studies.

Table 18. Comparison with other studies.

Ref. Year Model Accuracy F1 Score

[19] 2022 RF 0.98 0.98

[21] 2022 DT 0.98 0.97

[20] 2022 DNN 0.93 0.93

[29] 2022 ConvSGLV 0.96 0.96

This study 2022 MLFS+RF 0.99 0.99

4.10. Discussion on Hyperthyroidism and Hypothyroidism

The thyroid disease prediction has been challenging, as the prior detection and evalu-
ation of thyroid symptoms without doctor involvement are not easy. Therefore, thyroid
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disease classification solutions can accurately predict the thyroid disease type like hy-
perthyroidism or hypothyroidism, given the machine learning models are trained with
sufficient data samples and their performance is optimized. Our work focused on accu-
rately classifying the patient’s thyroid condition given the data samples. Our technique can
be incorporated into a software-based solution to enter the patient data, and the software
leverages the trained machine learning model to estimate the patient thyroid condition.
We are also exploring the additional datasets, which can provide the data samples for
other thyroid-related classes like primary, secondary hypothyroid, T3 toxic, secondary
toxic, patients’ anti-thyroid treatment status, therapy condition, etc. Our detection method
can classify the patient’s disease condition using the proposed machine learning method.
In addition, with data from more classes and additional data for existing classes, the perfor-
mance of the models can be generalized to other thyroid diseases. The proposed approach
shows robust results, which can be significantly important for real-time disease detection.

5. Conclusions

With an alarming increase in recent years, thyroid disease detection has emerged
as an important medical problem and requires efficient automatic prediction models.
Existing studies predominantly focus on model optimization and feature engineering
and feature selection is less explored. Moreover, the dataset used for model evaluation
is small sized and models are not validated. This study overcomes these limitations
and proposes an approach that uses feature selection along with machine learning and
deep learning models. Besides FFS, BFS, BiDFE, and extra tree classifier-based features,
machine learning and deep learning models are employed. Results indicate that extra tree
classifier-based selected features tend to provide the highest accuracy of 0.99 when used
with the RF model. Other feature techniques yield poor results due to feature reduction,
which degrades the performance of both the deep learning and machine learning models,
especially linear models. The lower computational complexity of the machine learning
models like RF makes them good candidates for thyroid disease prediction. Similarly,
10-fold cross-validation results corroborate these findings. Performance comparison with
state-of-the-art approaches indicates the superior performance of the proposed approach.
We see the feature reduction and 5-class classification problem as the limitation of the study
and intend to increase the number of classes in our future work.
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