Material didáctico para el desarrollo lógico matemático para personas con discapacidad de primer curso del Bachillerato Técnico, del Centro de Entrenamiento Vocacional CEVE de FASINARM
Tesis
Materias > Psicología
Materias > Educación
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Cerrado
Español
En este trabajo de fin de máster se presenta los resultados de proyecto de investigación en el que se pretende analizar el proceso de integración pedagógica de las tecnologías de la información y comunicación (TIC) en las prácticas de enseñanza y aprendizaje del Centro de Entrenamiento Vocacional CEVE de FASINARM en la provincia del Guayas, cantón Guayaquil, Ecuador. Documento que se realiza con el fin de incorporar las TIC como recurso metodológico y para que estratégicamente puedan entender con facilidad los contenidos en las diferentes áreas, para este caso la Lógico Matemáticos, asignaturas trascendentes y relevantes en el diario vivir, puesto que representan un medio facilitador para acceder al conocimiento. Puesto que aquí se abarca los contenidos pertinentes del área de matemáticas y la manera como se puede lograr a través de las TIC, llegar al desarrollo de cualquier área del conocimiento. El objetivo de este trabajo de investigación es proponer material didáctico para el desarrollo lógico matemático para personas con discapacidad, de primer curso del Bachillerato Técnico. El desarrollo del proyecto de investigación es de tipo Cualitativo por lo que se usó métodos de recolección de datos con el propósito de describir la realidad tal como la experimental. A su vez cuantitativo porque permitió examinar los datos de manera numérica. Como conclusión se menciona que los recursos informáticos y multimedia con los que se cuenta, en la institución, permiten poner en práctica el área de informática y acceder de manera transversal a los procesos en el área de matemáticas. Con el desarrollo de esta propuesta se pudo constatar que es muy importante la implementación de las TIC en el aula para la práctica pedagógica del docente y un replanteamiento de la forma de enseñar y aprender, es por eso que se hace indispensable el aprovechamiento de estas herramientas en el aula de clase. La utilización del procesador de texto Word, fue de gran importancia porque genero motivación y creatividad en la realización de los trabajos escritos, al igual que la resolución de problema de forma interactiva y con videos.
metadata
Gutierrez Benavides, Marjoriee Elizabeth
mail
maryitog@gmail.com
(2022)
Material didáctico para el desarrollo lógico matemático para personas con discapacidad de primer curso del Bachillerato Técnico, del Centro de Entrenamiento Vocacional CEVE de FASINARM.
Masters thesis, SIN ESPECIFICAR.
Resumen
En este trabajo de fin de máster se presenta los resultados de proyecto de investigación en el que se pretende analizar el proceso de integración pedagógica de las tecnologías de la información y comunicación (TIC) en las prácticas de enseñanza y aprendizaje del Centro de Entrenamiento Vocacional CEVE de FASINARM en la provincia del Guayas, cantón Guayaquil, Ecuador. Documento que se realiza con el fin de incorporar las TIC como recurso metodológico y para que estratégicamente puedan entender con facilidad los contenidos en las diferentes áreas, para este caso la Lógico Matemáticos, asignaturas trascendentes y relevantes en el diario vivir, puesto que representan un medio facilitador para acceder al conocimiento. Puesto que aquí se abarca los contenidos pertinentes del área de matemáticas y la manera como se puede lograr a través de las TIC, llegar al desarrollo de cualquier área del conocimiento. El objetivo de este trabajo de investigación es proponer material didáctico para el desarrollo lógico matemático para personas con discapacidad, de primer curso del Bachillerato Técnico. El desarrollo del proyecto de investigación es de tipo Cualitativo por lo que se usó métodos de recolección de datos con el propósito de describir la realidad tal como la experimental. A su vez cuantitativo porque permitió examinar los datos de manera numérica. Como conclusión se menciona que los recursos informáticos y multimedia con los que se cuenta, en la institución, permiten poner en práctica el área de informática y acceder de manera transversal a los procesos en el área de matemáticas. Con el desarrollo de esta propuesta se pudo constatar que es muy importante la implementación de las TIC en el aula para la práctica pedagógica del docente y un replanteamiento de la forma de enseñar y aprender, es por eso que se hace indispensable el aprovechamiento de estas herramientas en el aula de clase. La utilización del procesador de texto Word, fue de gran importancia porque genero motivación y creatividad en la realización de los trabajos escritos, al igual que la resolución de problema de forma interactiva y con videos.
Tipo de Documento: | Tesis (Masters) |
---|---|
Palabras Clave: | integración, tecnología, metodología |
Clasificación temática: | Materias > Psicología Materias > Educación |
Divisiones: | Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster |
Depositado: | 07 Dic 2023 23:30 |
Ultima Modificación: | 07 Dic 2023 23:30 |
URI: | https://repositorio.unib.org/id/eprint/2764 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a class="ep_document_link" href="/17849/1/1-s2.0-S2590005625001043-main.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence
Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.
Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,
Saleem
<a href="/17844/1/frai-1-1572645.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A systematic review of deep learning methods for community detection in social networks
Introduction: The rapid expansion of generated data through social networks has introduced significant challenges, which underscores the need for advanced methods to analyze and interpret these complex systems. Deep learning has emerged as an effective approach, offering robust capabilities to process large datasets, and uncover intricate relationships and patterns. Methods: In this systematic literature review, we explore research conducted over the past decade, focusing on the use of deep learning techniques for community detection in social networks. A total of 19 studies were carefully selected from reputable databases, including the ACM Library, Springer Link, Scopus, Science Direct, and IEEE Xplore. This review investigates the employed methodologies, evaluates their effectiveness, and discusses the challenges identified in these works. Results: Our review shows that models like graph neural networks (GNNs), autoencoders, and convolutional neural networks (CNNs) are some of the most commonly used approaches for community detection. It also examines the variety of social networks, datasets, evaluation metrics, and employed frameworks in these studies. Discussion: However, the analysis highlights several challenges, such as scalability, understanding how the models work (interpretability), and the need for solutions that can adapt to different types of networks. These issues stand out as important areas that need further attention and deeper research. This review provides meaningful insights for researchers working in social network analysis. It offers a detailed summary of recent developments, showcases the most impactful deep learning methods, and identifies key challenges that remain to be explored.
Mohamed El-Moussaoui mail , Mohamed Hanine mail , Ali Kartit mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Isabel de la Torre Díez mail ,
El-Moussaoui
<a class="ep_document_link" href="/17831/1/s43856-025-01020-4.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Association between blood cortisol levels and numerical rating scale in prehospital pain assessment
Background Nowadays, there is no correlation between levels of cortisol and pain in the prehospital setting. The aim of this work was to determine the ability of prehospital cortisol levels to correlate to pain. Cortisol levels were compared with those of the numerical rating scale (NRS). Methods This is a prospective observational study looking at adult patients with acute disease managed by Emergency Medical Services (EMS) and transferred to the emergency department of two tertiary care hospitals. Epidemiological variables, vital signs, and prehospital blood analysis data were collected. A total of 1516 patients were included, the median age was 67 years (IQR: 51–79; range: 18–103) with 42.7% of females. The primary outcome was pain evaluation by NRS, which was categorized as pain-free (0 points), mild (1–3), moderate (4–6), or severe (≥7). Analysis of variance, correlation, and classification capacity in the form area under the curve of the receiver operating characteristic (AUC) curve were used to prospectively evaluate the association of cortisol with NRS. Results The median NRS and cortisol level are 1 point (IQR: 0–4) and 282 nmol/L (IQR: 143–433). There are 584 pain-free patients (38.5%), 525 mild (34.6%), 244 moderate (16.1%), and 163 severe pain (10.8%). Cortisol levels in each NRS category result in p < 0.001. The correlation coefficient between the cortisol level and NRS is 0.87 (p < 0.001). The AUC of cortisol to classify patients into each NRS category is 0.882 (95% CI: 0.853–0.910), 0.496 (95% CI: 0.446–0.545), 0.837 (95% CI: 0.803–0.872), and 0.981 (95% CI: 0.970–0.991) for the pain-free, mild, moderate, and severe categories, respectively. Conclusions Cortisol levels show similar pain evaluation as NRS, with high-correlation for NRS pain categories, except for mild-pain. Therefore, cortisol evaluation via the EMS could provide information regarding pain status.
Raúl López-Izquierdo mail , Elisa A. Ingelmo-Astorga mail , Carlos del Pozo Vegas mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Ancor Sanz-García mail , Francisco Martín-Rodríguez mail ,
López-Izquierdo
<a class="ep_document_link" href="/17838/1/s41598-025-02008-9.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Botnet detection in internet of things using stacked ensemble learning model
Botnets are used for malicious activities such as cyber-attacks, spamming, and data theft and have become a significant threat to cyber security. Despite existing approaches for cyber attack detection, botnets prove to be a particularly difficult problem that calls for more advanced detection methods. In this research, a stacking classifier is proposed based on K-nearest neighbor, support vector machine, decision tree, random forest, and multilayer perceptron, called KSDRM, for botnet detection. Logistic regression acts as the meta-learner to combine the predictions from the base classifiers into the final prediction with the aim of increasing the overall accuracy and predictive performance of the ensemble. The UNSW-NB15 dataset is used to train machine learning models and evaluate their effectiveness in detecting cyber-attacks on IoT networks. The categorical features are transformed into numerical values using label encoding. Machine learning techniques are adopted to recognize botnet attacks to enhance cyber security measures. The KSDRM model successfully captures the complex patterns and traits of botnet attacks and obtains 99.99% training accuracy. The KSDRM model also performs well during testing by achieving an accuracy of 97.94%. Based on 3, 5, 7, and 10 folds, the k-fold cross-validation results show that the proposed method’s average accuracy is 99.89%, 99.88%, 99.89%, and 99.87%, respectively. Further, the demonstration of experiments and results shows the KSDRM model is an effective method to identify botnet-based cyber attacks. The findings of this study have the potential to improve cyber security controls and strengthen networks against changing threats.
Mudasir Ali mail , Muhammad Faheem Mushtaq mail , Urooj Akram mail , Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Hanen Karamti mail , Imran Ashraf mail ,
Ali
<a class="ep_document_link" href="/17839/1/s41598-025-05028-7.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Enhanced schizophrenia detection using multichannel EEG and CAOA-RST-based feature selection
Schizophrenia is a mental disorder characterized by hallucinations, delusions, disorganized thinking and behavior, and inappropriate affect. Early and accurate diagnosis of schizophrenia remains a challenge due to the disorder’s complex nature and the limitations of state-of-the-art techniques. It is evident from the literature that electroencephalogram (EEG) signals provide valuable insights into brain activity, but their high dimensionality and complexity pose remain key challenges. Thus, our research introduces a novel approach by integrating the multichannel EGG, Crossover-Boosted Archimedes Optimization Algorithm (CAOA), and Rough Set Theory (RST) for schizophrenia detection. It is a four-stage model. In the first stage, Raw EGG data is collected. The data is passed to the next stage, which is called data preprocessing. This is used for artifact removal, band-pass filtering, and data normalization. The preprocessed data passed to the next stage. In the feature extraction stage, feature selection is performed using CAOA. In addition, classification is performed using a Support Vector Machine (SVM) based on features extracted through Multivariate Empirical Mode Function (MEMF) and entropy measures. The data interpretation stage displays the results to the end user using the data interpretation stage. We experimented and tested our proposed model using real EEG datasets. The simulation results prove that the proposed model achieved an average accuracy of 94.9%, sensitivity of 93.9%, specificity of 96.4%, and precision of 92.7%. Thus, our proposed model demonstrates significant improvements over state-of-the-art methods. In addition, the integration of CAOA and RST effectively addresses the challenges of high-dimensional EEG data, helps optimize the feature selection process, and increases accuracy. In future work, we suggest incorporating large-size datasets that include more diverse patient groups and refining the model with advanced machine-learning models and techniques.
Mohammad Abrar mail , Abdu Salam mail , Ahmed Albugmi mail , Fahad Al-otaibi mail , Farhan Amin mail , Isabel de la Torre mail , Thania Chio Montero mail , Perla Aracely Arroyo Gala mail ,
Abrar