Análisis de Factibilidad de un sistema de tratamiento diseñado para convertir los residuos sólidos urbanos originados en el Distrito Nacional en materia prima productiva.

Tesis Materias > Ingeniería Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Cerrado Español A lo largo de la historia, gracias a la evolución de la sociedad y las necesidades de consumo de la población, el medio ambiente y su entorno ha venido presentando deterioros graves, causando cambios en el clima, deceso de especies del conjunto total del ecosistema, contaminaciones a nivel del agua, suelo, aire, además de efectos nocivos hacia la salud de los habitantes. A consecuencia de esto, las naciones del mundo se han unido y han firmado acuerdos y estatutos donde se hace énfasis en que los gobiernos deben comprometerse y crear políticas entorno a la prevención y el cuidado del ambiente, con el propósito de poder evitar llegar a un punto de no retorno, alcanzando así temperaturas mayores de 1.5 C. Para poder lograr esta meta estratégica, las naciones han estado trabajando en conjunto, tal es el caso de la República Dominicana, que ha participado en varias conferencias, donde se han establecido acuerdos y suscrito a estatutos para desarrollar e implementar políticas y estrategias entorno a la gestión de los Residuos Sólidos, logrando mitigar su efecto adverso y contribución en el calentamiento global. Sin embargo, en la República Dominicana se ha detectado que las políticas y decretos ambientales establecidos, no están dando los resultados favorables que se esperaban, y es por esto que se puede observar grandes cúmulos de residuos en vías públicas principales, en ríos y en playas, además de haber vertederos improvisados en varios puntos del país.Es por esta razón, que con el objetivo se sustentar lo observado entorno a la problemática descrita, se procedió a realizar un estudio que contempla el levantamiento y análisis de información, asimismo como extracción de datos estadísticos para determinar las causas de improductividad del conjunto de medidas implementadas por las entidades gubernamentales dominicanas como el Ministerio de Medio Ambiente, La liga municipal y los Ayuntamientos de las diferentes regiones. Como resultado se obtuvo, que la mayor causa de improductividad está asociada a que las entidades gubernamentales no poseen un plan de control y seguimiento luego de haber establecido las medidas, por lo que, no pueden medir los resultados asociados, ni detectar problemas para luego proceder a desarrollar medidas de correcciones y ajustes. Concluyendo la etapa de investigación y con base a la información obtenida, se da paso a la realización del proyecto de intervención, en el cual se propone como solución el desarrollo de un Plan estratégico de control en conjunto con un modelo de tratamientos nuevos, que permita medir las implementaciones realizada por la entidad y reducir las acumulaciones de los residuos sólidos en el país. metadata Chez Yunes, Cristy Marlene mail cristychezy@hotmail.com (2022) Análisis de Factibilidad de un sistema de tratamiento diseñado para convertir los residuos sólidos urbanos originados en el Distrito Nacional en materia prima productiva. Masters thesis, SIN ESPECIFICAR.

Texto completo no disponible.

Resumen

A lo largo de la historia, gracias a la evolución de la sociedad y las necesidades de consumo de la población, el medio ambiente y su entorno ha venido presentando deterioros graves, causando cambios en el clima, deceso de especies del conjunto total del ecosistema, contaminaciones a nivel del agua, suelo, aire, además de efectos nocivos hacia la salud de los habitantes. A consecuencia de esto, las naciones del mundo se han unido y han firmado acuerdos y estatutos donde se hace énfasis en que los gobiernos deben comprometerse y crear políticas entorno a la prevención y el cuidado del ambiente, con el propósito de poder evitar llegar a un punto de no retorno, alcanzando así temperaturas mayores de 1.5 C. Para poder lograr esta meta estratégica, las naciones han estado trabajando en conjunto, tal es el caso de la República Dominicana, que ha participado en varias conferencias, donde se han establecido acuerdos y suscrito a estatutos para desarrollar e implementar políticas y estrategias entorno a la gestión de los Residuos Sólidos, logrando mitigar su efecto adverso y contribución en el calentamiento global. Sin embargo, en la República Dominicana se ha detectado que las políticas y decretos ambientales establecidos, no están dando los resultados favorables que se esperaban, y es por esto que se puede observar grandes cúmulos de residuos en vías públicas principales, en ríos y en playas, además de haber vertederos improvisados en varios puntos del país.Es por esta razón, que con el objetivo se sustentar lo observado entorno a la problemática descrita, se procedió a realizar un estudio que contempla el levantamiento y análisis de información, asimismo como extracción de datos estadísticos para determinar las causas de improductividad del conjunto de medidas implementadas por las entidades gubernamentales dominicanas como el Ministerio de Medio Ambiente, La liga municipal y los Ayuntamientos de las diferentes regiones. Como resultado se obtuvo, que la mayor causa de improductividad está asociada a que las entidades gubernamentales no poseen un plan de control y seguimiento luego de haber establecido las medidas, por lo que, no pueden medir los resultados asociados, ni detectar problemas para luego proceder a desarrollar medidas de correcciones y ajustes. Concluyendo la etapa de investigación y con base a la información obtenida, se da paso a la realización del proyecto de intervención, en el cual se propone como solución el desarrollo de un Plan estratégico de control en conjunto con un modelo de tratamientos nuevos, que permita medir las implementaciones realizada por la entidad y reducir las acumulaciones de los residuos sólidos en el país.

Tipo de Documento: Tesis (Masters)
Palabras Clave: Residuos Sólidos Urbanos, Tratamiento de Residuos, Políticas de Gestión, Clasificación de Residuos, Energía Renovable
Clasificación temática: Materias > Ingeniería
Divisiones: Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Depositado: 08 Nov 2023 23:30
Ultima Modificación: 08 Nov 2023 23:30
URI: https://repositorio.unib.org/id/eprint/1855

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a class="ep_document_link" href="/17844/1/frai-1-1572645.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

A systematic review of deep learning methods for community detection in social networks

Introduction: The rapid expansion of generated data through social networks has introduced significant challenges, which underscores the need for advanced methods to analyze and interpret these complex systems. Deep learning has emerged as an effective approach, offering robust capabilities to process large datasets, and uncover intricate relationships and patterns. Methods: In this systematic literature review, we explore research conducted over the past decade, focusing on the use of deep learning techniques for community detection in social networks. A total of 19 studies were carefully selected from reputable databases, including the ACM Library, Springer Link, Scopus, Science Direct, and IEEE Xplore. This review investigates the employed methodologies, evaluates their effectiveness, and discusses the challenges identified in these works. Results: Our review shows that models like graph neural networks (GNNs), autoencoders, and convolutional neural networks (CNNs) are some of the most commonly used approaches for community detection. It also examines the variety of social networks, datasets, evaluation metrics, and employed frameworks in these studies. Discussion: However, the analysis highlights several challenges, such as scalability, understanding how the models work (interpretability), and the need for solutions that can adapt to different types of networks. These issues stand out as important areas that need further attention and deeper research. This review provides meaningful insights for researchers working in social network analysis. It offers a detailed summary of recent developments, showcases the most impactful deep learning methods, and identifies key challenges that remain to be explored.

Producción Científica

Mohamed El-Moussaoui mail , Mohamed Hanine mail , Ali Kartit mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Isabel de la Torre Díez mail ,

El-Moussaoui

<a href="/17831/1/s43856-025-01020-4.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Association between blood cortisol levels and numerical rating scale in prehospital pain assessment

Background Nowadays, there is no correlation between levels of cortisol and pain in the prehospital setting. The aim of this work was to determine the ability of prehospital cortisol levels to correlate to pain. Cortisol levels were compared with those of the numerical rating scale (NRS). Methods This is a prospective observational study looking at adult patients with acute disease managed by Emergency Medical Services (EMS) and transferred to the emergency department of two tertiary care hospitals. Epidemiological variables, vital signs, and prehospital blood analysis data were collected. A total of 1516 patients were included, the median age was 67 years (IQR: 51–79; range: 18–103) with 42.7% of females. The primary outcome was pain evaluation by NRS, which was categorized as pain-free (0 points), mild (1–3), moderate (4–6), or severe (≥7). Analysis of variance, correlation, and classification capacity in the form area under the curve of the receiver operating characteristic (AUC) curve were used to prospectively evaluate the association of cortisol with NRS. Results The median NRS and cortisol level are 1 point (IQR: 0–4) and 282 nmol/L (IQR: 143–433). There are 584 pain-free patients (38.5%), 525 mild (34.6%), 244 moderate (16.1%), and 163 severe pain (10.8%). Cortisol levels in each NRS category result in p < 0.001. The correlation coefficient between the cortisol level and NRS is 0.87 (p < 0.001). The AUC of cortisol to classify patients into each NRS category is 0.882 (95% CI: 0.853–0.910), 0.496 (95% CI: 0.446–0.545), 0.837 (95% CI: 0.803–0.872), and 0.981 (95% CI: 0.970–0.991) for the pain-free, mild, moderate, and severe categories, respectively. Conclusions Cortisol levels show similar pain evaluation as NRS, with high-correlation for NRS pain categories, except for mild-pain. Therefore, cortisol evaluation via the EMS could provide information regarding pain status.

Producción Científica

Raúl López-Izquierdo mail , Elisa A. Ingelmo-Astorga mail , Carlos del Pozo Vegas mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Ancor Sanz-García mail , Francisco Martín-Rodríguez mail ,

López-Izquierdo

<a class="ep_document_link" href="/17838/1/s41598-025-02008-9.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Botnet detection in internet of things using stacked ensemble learning model

Botnets are used for malicious activities such as cyber-attacks, spamming, and data theft and have become a significant threat to cyber security. Despite existing approaches for cyber attack detection, botnets prove to be a particularly difficult problem that calls for more advanced detection methods. In this research, a stacking classifier is proposed based on K-nearest neighbor, support vector machine, decision tree, random forest, and multilayer perceptron, called KSDRM, for botnet detection. Logistic regression acts as the meta-learner to combine the predictions from the base classifiers into the final prediction with the aim of increasing the overall accuracy and predictive performance of the ensemble. The UNSW-NB15 dataset is used to train machine learning models and evaluate their effectiveness in detecting cyber-attacks on IoT networks. The categorical features are transformed into numerical values using label encoding. Machine learning techniques are adopted to recognize botnet attacks to enhance cyber security measures. The KSDRM model successfully captures the complex patterns and traits of botnet attacks and obtains 99.99% training accuracy. The KSDRM model also performs well during testing by achieving an accuracy of 97.94%. Based on 3, 5, 7, and 10 folds, the k-fold cross-validation results show that the proposed method’s average accuracy is 99.89%, 99.88%, 99.89%, and 99.87%, respectively. Further, the demonstration of experiments and results shows the KSDRM model is an effective method to identify botnet-based cyber attacks. The findings of this study have the potential to improve cyber security controls and strengthen networks against changing threats.

Producción Científica

Mudasir Ali mail , Muhammad Faheem Mushtaq mail , Urooj Akram mail , Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Hanen Karamti mail , Imran Ashraf mail ,

Ali

<a href="/17839/1/s41598-025-05028-7.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Enhanced schizophrenia detection using multichannel EEG and CAOA-RST-based feature selection

Schizophrenia is a mental disorder characterized by hallucinations, delusions, disorganized thinking and behavior, and inappropriate affect. Early and accurate diagnosis of schizophrenia remains a challenge due to the disorder’s complex nature and the limitations of state-of-the-art techniques. It is evident from the literature that electroencephalogram (EEG) signals provide valuable insights into brain activity, but their high dimensionality and complexity pose remain key challenges. Thus, our research introduces a novel approach by integrating the multichannel EGG, Crossover-Boosted Archimedes Optimization Algorithm (CAOA), and Rough Set Theory (RST) for schizophrenia detection. It is a four-stage model. In the first stage, Raw EGG data is collected. The data is passed to the next stage, which is called data preprocessing. This is used for artifact removal, band-pass filtering, and data normalization. The preprocessed data passed to the next stage. In the feature extraction stage, feature selection is performed using CAOA. In addition, classification is performed using a Support Vector Machine (SVM) based on features extracted through Multivariate Empirical Mode Function (MEMF) and entropy measures. The data interpretation stage displays the results to the end user using the data interpretation stage. We experimented and tested our proposed model using real EEG datasets. The simulation results prove that the proposed model achieved an average accuracy of 94.9%, sensitivity of 93.9%, specificity of 96.4%, and precision of 92.7%. Thus, our proposed model demonstrates significant improvements over state-of-the-art methods. In addition, the integration of CAOA and RST effectively addresses the challenges of high-dimensional EEG data, helps optimize the feature selection process, and increases accuracy. In future work, we suggest incorporating large-size datasets that include more diverse patient groups and refining the model with advanced machine-learning models and techniques.

Artículos y libros

Mohammad Abrar mail , Abdu Salam mail , Ahmed Albugmi mail , Fahad Al-otaibi mail , Farhan Amin mail , Isabel de la Torre mail , Thania Chio Montero mail , Perla Aracely Arroyo Gala mail ,

Abrar

<a href="/17827/1/fspor-1-1614186.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Methodology and content for the design of basketball coach education programs: a systematic review

Background: The increasing complexity of basketball and the need for optimal decision-making in order to maximize competitive performance highlight the necessity of specialized training for basketball coaches. This systematic review aims to compile, synthesize, and integrate international research published in specialized journals on the training of basketball coaches and students, examining their characteristics and needs. Specifically, it analyzes the content, technical-tactical actions, and methodologies used in practice and education programs to determine which essential parameters for their technical and tactical development. Methods: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA®) guidelines and the PICOS® model until January 30, 2025, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus, and Scopus databases. The risk of bias was assessed and the PEDro scale was used to analyze methodological quality. Results: A total of 14,090 articles were obtained in the initial search. After inclusion and exclusion criteria, the final sample was 23 articles. These studies maintained a high standard of quality. This revealed data on the technical-tactical actions addressed in different categories; the profiles, characteristics, and influence of coaches on player development; and the approaches, teaching methods, and evaluation methodologies used in acquiring knowledge and competencies for the professional development of basketball coaches. Conclusions: Adequate theoretical and practical training for basketball coaches is essential for player development. Therefore, training programs for basketball coaches must integrate technical-tactical, physical, and psychological knowledge with the acquisition of skills and competencies that are refined through practice. This training should be continuous, more specialized, and comprehensive, focusing on understanding and constructing knowledge that supports the professional growth of basketballers. Additionally, training should incorporate digital tools and informal learning opportunities, with blended learning emerging as the most effective methodology for this purpose.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Julio Calleja-González mail , Jeisson Mosquera-Maturana mail , Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es,

Alemany Iturriaga