El consumo de estupefacientes y su incidencia en el desempeño académico en estudiantes del Bachillerato General Unificado (BGU) de la Unidad Educativa Fiscal “Nueve de Octubre” de la ciudad de Guayaquil, período 2018-2019
Thesis
Subjects > Teaching
Ibero-american International University > Teaching > Final Master Projects
Ibero-american International University > Teaching > Final Master Projects
Cerrado
Español
El tema denominado: “El consumo de estupefacientes y su incidencia en el desempeño académico en estudiantes del Bachillerato General Unificado (BGU) de la Unidad Educativa Fiscal “Nueve de Octubre” de la ciudad de Guayaquil, período 2018-2019”, es planteado debido a que existe un incremento de estudiantes que presentan signos de adicción, personalidad baja y poca autoestima, que hacen que el rendimiento estudiantil sea coartado. Se plantea el siguiente objetivo general: Analizar la incidencia del consumo de estupefacientes en el desempeño académico en los estudiantes del Bachillerato General Unificado de la Unidad Educativa Fiscal “Nueve de Octubre” en la ciudad de Guayaquil, período 2018-2019. Para el cumplimiento del mismo, se han estudiado las teorías de Goleman sobre las conductas desadaptativas del ser humano, las mismas, que inciden en las diversas actividades a desempeñar, entre ellas el estudio. El estudio es mixto, el objeto de estudio son los estudiantes del Bachillerato General Unificado, en edades comprendidas entre 14 y 17 años, las población fue de 600 estudiantes y la muestra de 234, el instrumento aplicado fue la encuesta, la cual obtuvo los siguientes resultados principales: los ingresos de las familias son limitados, y la mayoría de los estudiantes viven con el padre y la madre, sin embargo un 28,63% convive con un pariente cercano y el 5,98% no vive con nadie, por ende los estudiantes deben realizar sus propias obligaciones como preparase sus alimentos, realizar tareas encomendadas en la institución y asistir puntualmente al plantel, el 22,22% de estudiantes con problemas de adicción, siendo la heroína la sustancia que mayor demanda tiene en el mercado, de acuerdo al 52,56%, siendo un problema difícil de solucionar, pero sí se puede controlar la adicción, consumo y expendio en la institución, planteando estrategias que fortalezcan estos aspectos, por lo que se concluye que es necesario y vital construir estrategias institucionales que controlen la adicción y consumo en los estudiantes.
metadata
Layedra Alvarez, Ana Leticia
mail
anitalaye.04@gmail.com
(2022)
El consumo de estupefacientes y su incidencia en el desempeño académico en estudiantes del Bachillerato General Unificado (BGU) de la Unidad Educativa Fiscal “Nueve de Octubre” de la ciudad de Guayaquil, período 2018-2019.
Masters thesis, UNSPECIFIED.
Abstract
El tema denominado: “El consumo de estupefacientes y su incidencia en el desempeño académico en estudiantes del Bachillerato General Unificado (BGU) de la Unidad Educativa Fiscal “Nueve de Octubre” de la ciudad de Guayaquil, período 2018-2019”, es planteado debido a que existe un incremento de estudiantes que presentan signos de adicción, personalidad baja y poca autoestima, que hacen que el rendimiento estudiantil sea coartado. Se plantea el siguiente objetivo general: Analizar la incidencia del consumo de estupefacientes en el desempeño académico en los estudiantes del Bachillerato General Unificado de la Unidad Educativa Fiscal “Nueve de Octubre” en la ciudad de Guayaquil, período 2018-2019. Para el cumplimiento del mismo, se han estudiado las teorías de Goleman sobre las conductas desadaptativas del ser humano, las mismas, que inciden en las diversas actividades a desempeñar, entre ellas el estudio. El estudio es mixto, el objeto de estudio son los estudiantes del Bachillerato General Unificado, en edades comprendidas entre 14 y 17 años, las población fue de 600 estudiantes y la muestra de 234, el instrumento aplicado fue la encuesta, la cual obtuvo los siguientes resultados principales: los ingresos de las familias son limitados, y la mayoría de los estudiantes viven con el padre y la madre, sin embargo un 28,63% convive con un pariente cercano y el 5,98% no vive con nadie, por ende los estudiantes deben realizar sus propias obligaciones como preparase sus alimentos, realizar tareas encomendadas en la institución y asistir puntualmente al plantel, el 22,22% de estudiantes con problemas de adicción, siendo la heroína la sustancia que mayor demanda tiene en el mercado, de acuerdo al 52,56%, siendo un problema difícil de solucionar, pero sí se puede controlar la adicción, consumo y expendio en la institución, planteando estrategias que fortalezcan estos aspectos, por lo que se concluye que es necesario y vital construir estrategias institucionales que controlen la adicción y consumo en los estudiantes.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Consumo de estupefacientes, desempeño académico, programas de inclusión, drogadicción. |
Subjects: | Subjects > Teaching |
Divisions: | Ibero-american International University > Teaching > Final Master Projects Ibero-american International University > Teaching > Final Master Projects |
Date Deposited: | 31 Oct 2023 23:30 |
Last Modified: | 31 Oct 2023 23:30 |
URI: | https://repositorio.unib.org/id/eprint/1483 |
Actions (login required)
View Item |
<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,
Alemany Iturriaga
<a class="ep_document_link" href="/14584/1/s41598-024-73664-6.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.
Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,
de Santos Castro
<a class="ep_document_link" href="/14915/1/s41598-024-74357-w.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Diabetes is a persistent health condition led by insufficient use or inappropriate use of insulin in the body. If left undetected, it can lead to further complications involving organ damage such as heart, lungs, and eyes. Timely detection of diabetes helps obtain the right medication, diet, and exercise plan to lead a healthy life. ML approach has been utilized to obtain rapid and reliable diabetes detection, however, existing approaches suffer from the use of limited datasets, lack of generalizability, and lower accuracy. This study proposes a novel feature extraction approach to overcome these limitations by using an ensemble of convolutional neural network (CNN) and long short-term memory (LSTM) models. Multiple datasets are combined to make a larger dataset for experiments and multiple features are utilized for investigating the efficacy of the proposed approach. Features from the extra tree classifier, CNN, and LSTM are also considered for comparison. Experimental results reveal the superb performance of CNN-LSTM-based features with random forest model obtaining a 0.99 accuracy score. This performance is further validated by comparison with existing approaches and k-fold cross-validation which shows the proposed approach provides robust results.
Furqan Rustam mail , Ahmad Sami Al-Shamayleh mail , Rahman Shafique mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, J. Pablo Miramontes Gonzalez mail , Imran Ashraf mail ,
Rustam
<a href="/14950/1/fmicb-15-1481418.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: The 2023 dengue outbreak has proven that dengue is not only an endemic disease but also an emerging health threat in Bangladesh. Integrated studies on the epidemiology, clinical characteristics, seasonality, and genotype of dengue are limited. This study was conducted to determine recent trends in the molecular epidemiology, clinical features, and seasonality of dengue outbreaks. Methods: We analyzed data from 41 original studies, extracting epidemiological information from all 41 articles, clinical symptoms from 30 articles, and genotypic diversity from 11 articles. The study adhered to the standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement and Cochrane Collaboration guidelines. Conclusion: This study provides integrated insights into the molecular epidemiology, clinical features, seasonality, and transmission of dengue in Bangladesh and highlights research gaps for future studies.
Nadim Sharif mail , Rubayet Rayhan Opu mail , Tama Saha mail , Abdullah Ibna Masud mail , Jannatin Naim mail , Khalaf F. Alsharif mail , Khalid J. Alzahrani mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Irene Delgado Noya mail irene.delgado@uneatlantico.es, Isabel De la Torre Díez mail , Shuvra Kanti Dey mail ,
Sharif
<a class="ep_document_link" href="/14951/1/sensors-24-06965-v2.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Decoding Brain Signals from Rapid-Event EEG for Visual Analysis Using Deep Learning
The perception and recognition of objects around us empower environmental interaction. Harnessing the brain’s signals to achieve this objective has consistently posed difficulties. Researchers are exploring whether the poor accuracy in this field is a result of the design of the temporal stimulation (block versus rapid event) or the inherent complexity of electroencephalogram (EEG) signals. Decoding perceptive signal responses in subjects has become increasingly complex due to high noise levels and the complex nature of brain activities. EEG signals have high temporal resolution and are non-stationary signals, i.e., their mean and variance vary overtime. This study aims to develop a deep learning model for the decoding of subjects’ responses to rapid-event visual stimuli and highlights the major factors that contribute to low accuracy in the EEG visual classification task.The proposed multi-class, multi-channel model integrates feature fusion to handle complex, non-stationary signals. This model is applied to the largest publicly available EEG dataset for visual classification consisting of 40 object classes, with 1000 images in each class. Contemporary state-of-the-art studies in this area investigating a large number of object classes have achieved a maximum accuracy of 17.6%. In contrast, our approach, which integrates Multi-Class, Multi-Channel Feature Fusion (MCCFF), achieves a classification accuracy of 33.17% for 40 classes. These results demonstrate the potential of EEG signals in advancing EEG visual classification and offering potential for future applications in visual machine models.
Madiha Rehman mail , Humaira Anwer mail , Helena Garay mail helena.garay@uneatlantico.es, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Isabel De la Torre Díez mail , Hafeez ur Rehman Siddiqui mail , Saleem Ullah mail ,
Rehman