Factores determinantes en el desempeño de los emprendimientos empresariales a escala local en Costa Rica. Herramienta metodológica para su identificación, evaluación y diseño de estrategias para su potenciación
Thesis
Subjects > Social Sciences
Subjects > Teaching
Ibero-american International University > Research > Doctoral Thesis
Cerrado
Español
La presente tesis doctoral tiene como objetivo desarrollar una herramienta metodológica para la identificación y evaluación de los factores determinantes del desempeño en los emprendimientos empresariales y la elaboración de estrategias para su potenciación o atenuación a escala local en Costa Rica, tomando como objeto de estudio la provincia de Guanacaste. Se planteó un estudio descriptivo-explicativo, de tipo no experimental, transeccional correlacional, basado en el enfoque cuantitativo de investigación. Los datos fueron recopilados mediante encuestas con preguntas de tipo escala Likert. En donde participaran 468 emprendimientos, seleccionados con una muestra probabilística estratificada. Además del uso de la técnica Delphi a un grupo de 150 expertos. El análisis de datos se realizó con la ayuda de los sistemas informáticos Microsoft Excel, Software IBM SPSS Statistic, AHP Decision y SmartPLS para establecer valores y resultados más exactos y precisos considerando un modelo ecuaciones estructurales PLS-SEM para validar hipótesis. Los resultados de la investigación permitieron la identificación de 47 factores determinantes agrupados en 4 dimensiones: las dimensiones de factores de capital humano, psicológicos, endógenos y exógenos. Asimismo, los factores como: perfil socioeconómico, la ética laboral, la autoestima, las relaciones interpersonales, la orientación al cliente, el conocimiento de la tecnología, microeconómicos y comerciales presentan un factor de ponderación promedio de 30,75 siendo de los factores con mayor impacto en el desempeño, por lo que aquellos emprendimientos que desarrollen sus estrategias a partir de estos determinantes estarán más cerca de lograr el éxito, de tal manera que la herramienta metodológica propuesta contribuye a la toma de decisiones de política pública costarricense. La herramienta metodológica desarrollada en esta investigación contribuye a garantizar el éxito de los emprendimientos empresariales a escala local en Costa Rica permitiendo tener un punto de referencia para la toma de decisiones, asesoramiento, realimentación, evaluación, planeación y control de las personas emprendedoras y de todas aquellas instituciones públicas o privadas que deseen involucrarse con el tema de los negocios emprendedores.
metadata
Loáiciga Gutiérrez, Jorge Luis
mail
jorge.loaiciga@doctorado.unib.org
(2025)
Factores determinantes en el desempeño de los emprendimientos empresariales a escala local en Costa Rica. Herramienta metodológica para su identificación, evaluación y diseño de estrategias para su potenciación.
Doctoral thesis, UNSPECIFIED.
Abstract
La presente tesis doctoral tiene como objetivo desarrollar una herramienta metodológica para la identificación y evaluación de los factores determinantes del desempeño en los emprendimientos empresariales y la elaboración de estrategias para su potenciación o atenuación a escala local en Costa Rica, tomando como objeto de estudio la provincia de Guanacaste. Se planteó un estudio descriptivo-explicativo, de tipo no experimental, transeccional correlacional, basado en el enfoque cuantitativo de investigación. Los datos fueron recopilados mediante encuestas con preguntas de tipo escala Likert. En donde participaran 468 emprendimientos, seleccionados con una muestra probabilística estratificada. Además del uso de la técnica Delphi a un grupo de 150 expertos. El análisis de datos se realizó con la ayuda de los sistemas informáticos Microsoft Excel, Software IBM SPSS Statistic, AHP Decision y SmartPLS para establecer valores y resultados más exactos y precisos considerando un modelo ecuaciones estructurales PLS-SEM para validar hipótesis. Los resultados de la investigación permitieron la identificación de 47 factores determinantes agrupados en 4 dimensiones: las dimensiones de factores de capital humano, psicológicos, endógenos y exógenos. Asimismo, los factores como: perfil socioeconómico, la ética laboral, la autoestima, las relaciones interpersonales, la orientación al cliente, el conocimiento de la tecnología, microeconómicos y comerciales presentan un factor de ponderación promedio de 30,75 siendo de los factores con mayor impacto en el desempeño, por lo que aquellos emprendimientos que desarrollen sus estrategias a partir de estos determinantes estarán más cerca de lograr el éxito, de tal manera que la herramienta metodológica propuesta contribuye a la toma de decisiones de política pública costarricense. La herramienta metodológica desarrollada en esta investigación contribuye a garantizar el éxito de los emprendimientos empresariales a escala local en Costa Rica permitiendo tener un punto de referencia para la toma de decisiones, asesoramiento, realimentación, evaluación, planeación y control de las personas emprendedoras y de todas aquellas instituciones públicas o privadas que deseen involucrarse con el tema de los negocios emprendedores.
Item Type: | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords: | Desempeño, Emprendimiento, Empresario, Factores, Instrumentos, Metodologías |
Subjects: | Subjects > Social Sciences Subjects > Teaching |
Divisions: | Ibero-american International University > Research > Doctoral Thesis |
Date Deposited: | 07 Feb 2025 23:30 |
Last Modified: | 07 Feb 2025 23:30 |
URI: | https://repositorio.unib.org/id/eprint/12896 |
Actions (login required)
![]() |
View Item |
<a class="ep_document_link" href="/17061/1/fspor-1-1565900.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: Scientific research should be carried out to prevent sports injuries. For this purpose, new assessment technologies must be used to analyze and identify the risk factors for injury. The main objective of this systematic review was to compile, synthesize and integrate international research published in different scientific databases on Countermovement Jump (CMJ), Functional Movement Screen (FMS) and Tensiomyography (TMG) tests and technologies for the assessment of injury risk in sport. This way, this review determines the current state of the knowledge about this topic and allows a better understanding of the existing problems, making easier the development of future lines of research. Methodology: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and the PICOS model until November 30, 2024, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus and Scopus databases. The risk of bias was assessed and the PEDro scale was used to analyze methodological quality. Results: A total of 510 articles were obtained in the initial search. After inclusion and exclusion criteria, the final sample was 40 articles. These studies maintained a high standard of quality. This revealed the effects of the CMJ, FMS and TMG methods for sports injury assessment, indicating the sample population, sport modality, assessment methods, type of research design, study variables, main findings and intervention effects. Conclusions: The CMJ vertical jump allows us to evaluate the power capacity of the lower extremities, both unilaterally and bilaterally, detect neuromuscular asymmetries and evaluate fatigue. Likewise, FMS could be used to assess an athlete's basic movement patterns, mobility and postural stability. Finally, TMG is a non-invasive method to assess the contractile properties of superficial muscles, monitor the effects of training, detect muscle asymmetries, symmetries, provide information on muscle tone and evaluate fatigue. Therefore, they should be considered as assessment tests and technologies to individualize training programs and identify injury risk factors.
Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Antonio Bores-Cerezal mail antonio.bores@uneatlantico.es, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Julio Calleja-González mail ,
Velarde-Sotres
<a class="ep_document_link" href="/17139/1/s41598-025-89266-9.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
In the rapidly evolving landscape of artificial intelligence (AI) and the Internet of Things (IoT), the significance of device diagnostics and prognostics is paramount for guaranteeing the dependable operation and upkeep of intricate systems. The capacity to precisely diagnose and preemptively predict potential failures holds the potential to considerably amplify maintenance efficiency, diminish downtime, and optimize resource allocation. The wealth of information offered by telemetry data gathered from IoT devices presents an opportunity for diagnostics and prognostics applications. However, extracting valuable insights and making well-timed decisions from this extensive data reservoir remains a formidable challenge. This study proposes a novel AI-driven framework that integrates forward chaining and backward chaining algorithms to analyze telemetry data from IoT devices. The proposed methodology utilizes rule-based inference to detect real-time anomalies and predict potential future failures, providing a dual-layered approach for diagnostics and prognostics. The results show that the diagnostics engine using forward chaining detects real-time issues like “High Temperature” and “Low Pressure,” while the prognostics engine with backward chaining predicts potential future occurrences of these issues, enabling proactive prevention measures. The experimental results demonstrate that adopting this approach could offer valuable assistance to authorities and stakeholders. Accurate early diagnosis and prediction of potential failures have the capability to greatly improve maintenance efficiency, minimize downtime, and optimize cost.
Muhammad Shoaib Farooq mail , Rizwan Pervez Mir mail , Atif Alvi mail , Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Eduardo García Villena mail eduardo.garcia@uneatlantico.es, Fadwa Alrowais mail , Hanen Karamti mail , Imran Ashraf mail ,
Farooq
<a class="ep_document_link" href="/16577/1/nutrients-17-00521-v2.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Nut Consumption Is Associated with Cognitive Status in Southern Italian Adults
Background: Nut consumption has been considered a potential protective factor against cognitive decline. The aim of this study was to test whether higher total and specific nut intake was associated with better cognitive status in a sample of older Italian adults. Methods: A cross-sectional analysis on 883 older adults (>50 y) was conducted. A 110-item food frequency questionnaire was used to collect information on the consumption of various types of nuts. The Short Portable Mental Status Questionnaire was used to assess cognitive status. Multivariate logistic regression analyses were performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between nut intake and cognitive status after adjusting for potential confounding factors. Results: The median intake of total nuts was 11.7 g/day and served as a cut-off to categorize low and high consumers (mean intake 4.3 g/day vs. 39.7 g/day, respectively). Higher total nut intake was significantly associated with a lower prevalence of impaired cognitive status among older individuals (OR = 0.35, CI 95%: 0.15, 0.84) after adjusting for potential confounding factors. Notably, this association remained significant after additional adjustment for adherence to the Mediterranean dietary pattern as an indicator of diet quality, (OR = 0.32, CI 95%: 0.13, 0.77). No significant associations were found between cognitive status and specific types of nuts. Conclusions: Habitual nut intake is associated with better cognitive status in older adults.
Justyna Godos mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Evelyn Frias-Toral mail , Raynier Zambrano-Villacres mail , Angel Olider Rojas Vistorte mail angel.rojas@uneatlantico.es, Vanessa Yélamos Torres mail vanessa.yelamos@funiber.org, Maurizio Battino mail maurizio.battino@uneatlantico.es, Fabio Galvano mail , Sabrina Castellano mail , Giuseppe Grosso mail ,
Godos
<a class="ep_document_link" href="/16760/1/peerj-cs-2652.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel transfer learning approach for hand drawn mathematical geometric shapes classification
Hand-drawn mathematical geometric shapes are geometric figures, such as circles, triangles, squares, and polygons, sketched manually using pen and paper or digital tools. These shapes are fundamental in mathematics education and geometric problem-solving, serving as intuitive visual aids for understanding complex concepts and theories. Recognizing hand-drawn shapes accurately enables more efficient digitization of handwritten notes, enhances educational tools, and improves user interaction with mathematical software. This research proposes an innovative machine learning algorithm for the automatic classification of mathematical geometric shapes to identify and interpret these shapes from handwritten input, facilitating seamless integration with digital systems. We utilized a benchmark dataset of mathematical shapes based on a total of 20,000 images with eight classes circle, kite, parallelogram, square, rectangle, rhombus, trapezoid, and triangle. We introduced a novel machine-learning algorithm CnN-RFc that uses convolution neural networks (CNN) for spatial feature extraction and the random forest classifier for probabilistic feature extraction from image data. Experimental results illustrate that using the CnN-RFc method, the Light Gradient Boosting Machine (LGBM) algorithm surpasses state-of-the-art approaches with high accuracy scores of 98% for hand-drawn shape classification. Applications of the proposed mathematical geometric shape classification algorithm span various domains, including education, where it enhances interactive learning platforms and provides instant feedback to students.
Aneeza Alam mail , Ali Raza mail , Nisrean Thalji mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Imran Ashraf mail ,
Alam
<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,
Alemany Iturriaga