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Abstract: Recent developments in quantum computing have shed light on the shortcomings of the
conventional public cryptosystem. Even while Shor’s algorithm cannot yet be implemented on
quantum computers, it indicates that asymmetric key encryption will not be practicable or secure
in the near future. The National Institute of Standards and Technology (NIST) has started looking
for a post-quantum encryption algorithm that is resistant to the development of future quantum
computers as a response to this security concern. The current focus is on standardizing asymmetric
cryptography that should be impenetrable by a quantum computer. This has become increasingly
important in recent years. Currently, the process of standardizing asymmetric cryptography is
coming very close to being finished. This study evaluated the performance of two post-quantum
cryptography (PQC) algorithms, both of which were selected as NIST fourth-round finalists. The
research assessed the key generation, encapsulation, and decapsulation operations, providing insights
into their efficiency and suitability for real-world applications. Further research and standardiza-
tion efforts are required to enable secure and efficient post-quantum encryption. When selecting
appropriate post-quantum encryption algorithms for specific applications, factors such as security
levels, performance requirements, key sizes, and platform compatibility should be taken into account.
This paper provides helpful insight for post-quantum cryptography researchers and practitioners,
assisting in the decision-making process for selecting appropriate algorithms to protect confidential
data in the age of quantum computing.

Keywords: cryptography; post-quantum cryptography; asymmetric cryptography; key encapsulation
mechanism; BIKE; classic McEliece

1. Introduction

Cryptography is a method of protecting data in the presence of unauthorized users
by establishing a secure communication channel between two parties. This technique was
developed by the Institute of Electrical and Electronics Engineers (IEEE). Encryption and
decryption are the two processes that are carried out in cryptography by both the sender
and the receiver. The process of converting unencoded data into an encoded format referred
to as a “Cipher” using a safe data source is what we mean when we talk about encryption
(key). Decryption is the process of converting encrypted data back into its original plain
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form using either the same secure data source (key) or a different secure data source [1].
This process is the inverse of encryption.

There are two distinct categories of cryptographic methods: symmetric and asymmet-
ric. The process of the encryption and decryption of data in symmetric cryptography only
requires the use of a single key. A private key is utilized to carry out this method. This
refers to the requirement that a private key must be guarded in secrecy and given out to a
sender and recipient who are authorized to do so. The process of symmetric cryptography
is illustrated in Figure 1a. For encryption and decryption, asymmetric cryptography, also
known as public key cryptography, employs a key pair. One of the keys in the key pair is a
publicly accessible key. The sender will use a public key for encryption, while the recipient
will use the private key, which is only known to them [2]. Figure 1b depicts the operation
of an asymmetrical cryptography system.

(a)

(b)
Figure 1. Types of cryptography, (a) symmetric cryptography, and (b) asymmetric cryptography.

The use of quantum computers, with their unfathomable computing power, is rapidly
approaching reality [3]; it is no longer a dream. A computer based on the peculiar properties
of quantum mechanics can perform calculations exponentially faster than a computer made
of classical bits. In October 2019, Google announced the development of a quantum
computer that samples the output of a pseudo-random quantum circuit ten-times faster
than the fastest supercomputers available today [4]. Recent developments in quantum
computing pose a threat to public key primitives [5] due to quantum computers’ ability to
solve complex cryptographic problems in polynomial time. post-quantum cryptography
(PQC) refers to asymmetric cryptographic algorithms that can withstand attacks from a
quantum computer.

The National Institute of Standards and Technology (NIST) is currently developing a
new generation of quantum-resistant key encapsulation and authentication schemes [6] to
combat this threat to essential Internet security protocols such as transport layer security
(TLS). TLS [7] is the most-popularly employed secure communication protocol for online
page transfers, encrypted email server access, and mobile applications. The majority of
hypertext transfer protocol (HTTPS) service connections utilize TLS [8]. TLS uses Rivest–
Shamir–Adleman (RSA) or elliptic curve (EC) signatures and Diffie–Hellman (DH) with
EC for key exchange. It is crucial to plan the transition to quantum-resistant schemes,
such as Secure Hashing Algorithm-2 (SHA-2) and elliptic curve digital signature algorithm
(EC), which were not adopted until a decade after their standardization [9,10], given that
the adoption of cryptographic techniques could take years. It is important to note that
increasing the hash size of SHA-2 does not give essential protection against quantum
assaults. Larger hash sizes can provide temporary mitigation against some attacks, but they
are not an adequate remedy [11]. Quantum computers can still potentially break crypto-
graphic schemes based on hash functions by using algorithms specifically designed for
quantum computing. It is necessary to adopt algorithms and protocols that are designed
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explicitly to survive the assaults of quantum computers. These methods typically rely
on mathematical problems that both classical and quantum computers both find hard to
solve. We may already be investigating the impact of PQC on real-world performance,
whereas NIST takes performance, security, and other factors into account when selecting
algorithms for standardization. Therefore, the performance of the TLS handshake is of
great importance [12,13].

Digital signatures and key exchange algorithms are required for two parties to generate
a shared key and verify its authenticity. Signature algorithms (SIG) are utilized for sender
authentication, while key encapsulation algorithms (KEM) are utilized for key exchange.
In contrast to previous research, which typically only examined NIST third-round finalist
PQC algorithms or a limited selection of methods, we tested the performance advantages
of various combinations of NIST fourth-round finalist PQC algorithms for the two widely
used operating system (OS)s Windows and Linux. This allowed us to not only conclude
how PQC will impact day-to-day usage, but also compare the performance of the PQC
algorithm to that of the NIST third- and fourth-round finalists [14,15].

The rest of the study is organized as follows. Related work is presented in Section 2
along with the motivation behind PQC, highlighting the limitations of classical crypto-
graphic algorithms and the need for PQC. Section 3 provides a brief overview of the
methodology used in this study to evaluate PQC algorithms, including classic McEliece
and BIKE. Section 4 discusses the experimental results, which include performance metrics
such as encapsulation and encapsulation times. Finally, in Section 5, our conclusions and
recommendations for future research are given.

2. Related Work

As the power of quantum computers increases in the foreseeable future, we must
consider how this will affect Internet security. Given the power of quantum computing,
significant research effort is being devoted to solving the difficult problems used in modern
cryptography, which is expected to have a significant impact on the security of current
classic public key cryptosystems in the near future.

PQC refers to asymmetric cryptographic methods that are immune to quantum-
computer-based attacks. Shor’s algorithm was one of the first to demonstrate that three
problems that serve as the foundation of classical public key cryptography can be solved
in polynomial time by a quantum computer’s exponential computing power. Shor’s algo-
rithm, which has the potential to break a number into prime factors in polynomial time,
poses a threat to all currently popular asymmetric algorithms based on the integer factor-
ization problem, such as RSA, the discrete logarithm problem, elliptic curve cryptography
(ECC), and elliptic curve discrete logarithm (ECDH) [16]. Even if there are no quantum
computers capable of running Shor’s algorithm on a reasonably sized asymmetric key
today, one will exist in the future [17].

Due to the aforementioned circumstances, it is becoming increasingly important to
design a new quantum-safe encryption and authentication system that is not based on the
difficult problems of classical public key cryptography. TLS’s handshake protocol heavily
depends on variants of RSA, DH, and EC for signing and key exchange. In order to be
resistant to quantum computers, these algorithms must be replaced with PQC algorithms.
Several post-quantum cryptography alternatives have been proposed. The current five
families of PQC systems are code-based, lattice-based, hash-based, multivariate, and su-
persingular elliptic curve isogeny cryptography. The most-developed digital signature
methods are hash-based. They were presented for the first time in 1979 by Lamport [18],
Merkle, and Winternitz and have since undergone significant enhancements [19]. They
provide a high level of security and have been evaluated thoroughly. Ajtai introduced
lattice-based cryptography for the first time in 1996 [15]. In comparison to other PQC
families, it offers highly effective key encapsulation techniques. In contrast to hash-based
techniques, however, their security is less well known.
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KEM and SIG algorithms are both required for establishing a shared key and verifying
the authentication of two parties. Similar to previous NIST efforts to standardize various
sub-fields of cryptography, most notably the 2001 standardization of AES, NIST is currently
engaged in a project to standardize PQC algorithms. Numerous research analyses on
the PQC algorithms and their alternatives that have been presented and advanced to
the third round of the NIST standardization competition have already been conducted.
Two additional classifications exist for algorithms. The KEM algorithm is used for key
exchange, while the SIG algorithm is used for sender authentication. The key encapsulation
mechanisms and SIG algorithms [15,20] are displayed in Table 1.

Table 1. KEM and SIG algorithms—NIST PQC third-round finalists and alternate candidates.

Key Encapsulation Algorithms Signature Algorithms

Classic McEliece CRYSTALS-Dilithium
CRYSTALS-Kyber Falcon
NTRU Rainbow
Saber

BIKE GeMSS
HQC SPHINCS+
FrodoKEM Picnic
NTRU Prime

Past research has measured the performance of NIST third-round finalist PQC algo-
rithms in TLS handshakes based on a variety of parameters and NIST-established security
levels. NIST has standardized five levels of security strength, with Level 1 being the
least-secure and Level 5 being the most-secure [20].

Table 2 compares security levels to the difficulty of breaking classical encryption or
hashing algorithms with suitable key lengths. Tables 3 and 4 display related work on PQC
algorithms and signatures for performance evaluation.

Table 2. NIST standardized security levels.

Level Description

1 At least as hard to break as AES128
2 At least as hard to break as SHA256
3 At least as hard to break as AES192
4 At least as hard to break as SHA384
5 At least as hard to break as AES256

Table 3. Summary of related work on PQC key exchange algorithms.

Ref. Key Exchange Algorithm
NIST
Security
Level

Public Key
Length
(Bytes)

Private Key
Length
(Bytes)

Cipher Text
Length
(Bytes)

Key Gen Encaps Decaps
Key
Exchange
Mechanism

[21]

NewHope × × × × X X X ×

Kyber × × × × X X X ×

NTRU × × × × X X X ×

Frodo × × × × X X X ×

[6]

Kyber-512 1 800 1632 736 X X X ×

NewHope-512-CCA 1 928 1888 1120 X X X ×

Kyber-768 3 1184 2400 1088 X X X ×

NTRU-HRSS-701 3 1138 1450 1138 X X X ×
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Table 3. Cont.

Ref. Key Exchange Algorithm
NIST
Security
Level

Public Key
Length
(Bytes)

Private Key
Length
(Bytes)

Cipher Text
Length
(Bytes)

Key Gen Encaps Decaps
Key
Exchange
Mechanism

[22]

Kyber-512 1 × × × × × × X

Kyber-768 3 × × × × × × X

Kyber-1024 5 × × × × × × X

HQC-128 1 × × × × × × X

HQC-192 3 × × × × × × X

HQC-256 5 × × × × × × X

SIDH-p434 1 × × × × × × X

SIDH-p610 3 × × × × × × X

SIDH-p751 5 × × × × × × X

[23]

Kyber × 800 1632 736 X X X ×

NTRU × 930 1234 930 X X X ×

NTRU × 1138 1450 1138 X X X ×

Saber × 672 1568 736 X X X ×

FrodoKEM × 9616 19,888 9720 X X X ×

SIKE × 330 374 346 X X X ×

SIKE × 378 434 402 X X X ×

Kyber × 378 434 402 X X X ×

NTRU × 1230 1590 1230 X X X ×

Saber × 992 2304 1088 X X X ×

FrodoKEM × 15,632 31,296 15,744 X X X ×

NTRU Prime × 1158 1763 1039 X X X ×

NTRU Prime × 1039 1294 1167 X X X ×

SIKE × 462 524 486 X X X ×

Kyber × 1568 3068 1568 X X X ×

Saber × 1312 3040 1472 X X X ×

SIKE × 564 644 596 X X X ×

Table 4. Related work on PQC signature algorithms.

Ref. PQC Signature Algorithm NIST
Security Level

Public Key
Length (Bytes)

Private Key
Length (Bytes)

Signature
Length (Bytes) Sign Verify

[6]

Dilithium 2 1472 3504 2701 X X

SPHINCS+ SHA256-128f 1 32 64 16,976 X X

Dilithium 3 1760 3856 3366 X X

SPHINCS+ SHA256-192f- 3 48 96 35,664 X X

[22]

Falcon-512 1 × × × X X

Falcon-1024 5 × × × X X

Rainbow-I-Classic 1 × × × X X

Rainbow-III-Classic 3 × × × X X

Rainbow-V-Classic 5 × × × X X

SPHINCS+-SHAKE256-128f-Robust 1 × × × X X

SPHINCS+-SHAKE256-192f-Robust 3 × × × X X

SPHINCS+-SHAKE256-256f-Robust 5 × × × X X
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Table 4. Cont.

Ref. PQC Signature Algorithm NIST
Security Level

Public Key
Length (Bytes)

Private Key
Length (Bytes)

Signature
Length (Bytes) Sign Verify

[23]

Dilithium × 1184 2800 2044 × ×

Falcon × 1281 897 690 × ×

Falcon × 57,344 897 690 × ×

Dilithium × 1472 3504 2701 × ×

Dilithium × 1760 3856 3366 × ×

Falcon × 1793 2305 1330 × ×

NIST has already selected four third-round candidates for standardization and four for
further review and research in the fourth round [24]. Tables 5 and 6 detail these algorithms.

Table 5. Algorithms to be standardized.

Key Encapsulation Algorithms Signature Algorithms

CRYSTALS-Kyber CRYSTALS-Dilithium
Falcon

SPHINCS+

Table 6. KEM algorithms from NIST PQC fourth-round finalists.

Key Encapsulation Algorithms

BIKE
Classic McEliece

HQC
SIKE

In the era of the Internet of Things (IoT), NIST is concurrently conducting the Lightweight
Cryptography Standardization Process (LWC-SP), which aims to select lightweight crypto-
graphic algorithms for standardization. This process ensures that the chosen algorithms are
secure, efficient, and suitable for resource-constrained devices. Extensive research has been
conducted over the years on various lightweight cryptographic algorithms, studying their
principles, techniques, and countermeasures against fault attacks. These studies provide
valuable insights into the vulnerabilities and propose effective mitigation strategies in the
context of lightweight cryptography. Prominent algorithms in this field include Pomaranch
Cipher [25], Grostl Hash, Midori Cipher [26], RECTANGLE Cipher [27], and Ascon [28].
Notably, in the latest updates in February 2023, NIST has finalized the standardization of
the Ascon algorithm as part of the LWC-SP. The updates from NIST affirm that Ascon is
a secure and efficient lightweight block cipher. Ascon demonstrates versatility in imple-
mentation across different platforms and exhibits resistance against various attack vectors.
Given these qualities, Ascon emerges as a favorable option for deployment in resource-
constrained devices [29]. Evaluating the PQC algorithms for lightweight cryptography or
embedded systems is of utmost importance. Therefore, researchers have been studying
and conducting evaluations of PQC algorithms on ARM Cortex M4 processors to establish
benchmarks [23].

Not every combination of PQC signature and key exchange algorithms could be
considered for this study. In light of this, we chose two of the PQC algorithms, bit-
flipping key encapsulation (BIKE) and classic McEliece, for performance evaluation in this
study, which are fourth-round NIST finalists. Unlike prior studies, which focused on PQC
algorithms from a single family [30], this research took a broader approach by evaluating
and comparing all possible variants of PQC algorithms under scrutiny. This approach went
beyond the historical context and delves into the evaluation and performance analysis
of all variants, NIST PQC forth-round finalists, and alternate candidates on two different
operating systems. We examined the key lengths, private key lengths, ciphertext lengths,
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and key exchange methods of these algorithms to offer a full study of their practicality
and applicability for real-world applications. For key encapsulation, BIKE is a code-based
algorithm. BIKE’s security depends on a challenging problem in coding theory [31]. Due to
the recent update to the implementation, we cannot comment on the security of BIKE on
multiple fronts. However, NIST considers it a promising candidate and has advanced it to
the final round [24]. Once all security concerns have been addressed, standardization may
be considered.

Classic McEliece is the oldest cryptosystem proposed in Round 4 of the NIST PQC
standard [24] submissions. Based on the 1979 McEliece cryptosystem that employed secret
Goppa codes, the original cryptosystem was not designed to adhere to restrictions on public
use computation. Researchers in the field of cryptography have thoroughly examined and
analyzed the McEliece cryptosystem during the course of its history. Numerous assaults
have been considered and planned, but none have been able to undermine the scheme’s
entirety. The following notable assaults have been investigated:

• Information set decoding (ISD) attack:This attack served as the foundation for the
initial assault plan against McEliece. This approach attempted to discover a small
set of linearly dependent syndromes in order to retrieve the private key. It was
later demonstrated, though, that, with appropriate parameter selection, this attack is
not possible.

• Square root attack: This attack was introduced in the context of McEliece variants,
such as the Niederreiter cryptosystem. This attack tries to recover the private key by
taking advantage of the algebraic structure of the cryptosystem’s code. This attack,
however, is only relevant to certain parameter selections and is not seen as being
practical against versions of McEliece that have been properly configured [32].

• Meet-in-the-middle attack: This attack tries to exploit the error-correction capability of
the code and the encoding process to retrieve the private key. This assault, however,
needs an excessive amount of processing power and is not seen as a viable threat.

Classic McEliece provides security against chosen ciphertext attack (CCA). When the
message is selected at random, an attacker cannot decipher the message efficiently using
the cipher text and public key. The original cryptosystem offered security against one-way
CCA, meaning an attacker cannot efficiently decipher a message from a ciphertext and
a public key when the message is chosen at random [33]. This system combines NTS-
KEM and classic McEliece in order to provide efficient implementation and CCA security.
It implements the hashing of errors added to the cipher text and relies on the security
provided by hash functions. It is a defense against CCA attacks.

Although the performance comparison of the BIKE and classic McEliece algorithms
was the main emphasis of this work, it is important to be aware of various sorts of attacks
so that practical defenses against these threats can be evaluated in future research. The side-
channel attacks (SCAs) can exploit information leaked through the physical characteristics
of the cryptographic implementation. Two common types of SCAs are fault attacks and
power analysis attacks.

Fault attacks include introducing faults or errors within the cryptographic system on
purpose to obtain unauthorized access or extract sensitive information. An attacker can
compel the system to act unexpectedly by changing the execution environment, potentially
disclosing private keys or other confidential data. Fault attacks can be a serious threat to the
security of cryptographic devices. To preserve the integrity and security of cryptographic
operations, countermeasures against fault attacks include techniques such as redundancy,
error detection, error correction, and fault-tolerant-designed cryptography devices [34].
In contrast, power analysis attacks seek to leverage power consumption patterns or elec-
tromagnetic radiation released during cryptographic operations. An attacker can learn
about the secret keys or intermediate values utilized in the calculations by analyzing these
side-channel signals. Techniques such as power-analysis-resistant designs, randomizing
power usage, and implementing secure masking systems are examples of countermeasures
against power analysis attacks [35].
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In combined attacks, adversaries combine numerous attack strategies to maximize their
chances of success. A combined fault and power analysis attack, for example, may include
generating faults in the system while concurrently monitoring power usage to obtain
sensitive information. Assessing and managing the risks associated with combination
assaults requires a thorough examination of the system’s resistance to both fault and power
analysis attacks.

While this study work gives useful insights into the performance details of the Classic
McEliece and BIKE algorithms, more research is needed to fully analyze the resilience
of PQC algorithms against the active and passive side-channel attacks, as well as their
associated countermeasures.

3. Proposed Methodology

KEM is a cryptographic technique used to transmit a secret key over an unsecured
communication channel. The secret key is encapsulated in a layer of encryption before
being transmitted to the intended recipient, as displayed in Figures 2 and 3. After receiving
the encapsulated key, the recipient can use a separate key, known as a “key-decapsulation
key”, to decrypt and recover the original secret key. This allows for secure key exchange
without the need for a shared secret key to be established beforehand. Key generation and
encapsulation/decapsulation are the two main steps of a KEM process.

Figure 2. Key encapsulation mechanism overview.

Figure 3. Key encapsulation mechanism detail.

In the key-generation step, one of the entities generates a shared secret key. The secret
key is then encapsulated, or surrounded, by a collection of public parameters. The encap-
sulated key is then transmitted to the other entity, typically referred to as the “user” or
“receiver”. The recipient decapsulates the key using its own private key, thereby reveal-
ing the shared secret key. Encapsulation and decapsulation typically involve the use of
mathematical algorithms. KEMs are widely used in a variety of cryptographic systems to
exchange keys securely. Typical applications of KEMs include:
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• Secure communication:KEMs can be utilized to generate a shared secret key between
two parties, which can then be used to encrypt and decrypt communications.

• Key exchange: KEMs can be utilized to securely exchange a secret key between two
entities, thereby enabling the establishment of a secure communication channel.

• Key agreement: Multiple entities can establish a secure communication channel by
using KEMs to establish a shared secret key.

• Key derivation: KEMs can be used to generate a secret key from a master key, which
can then be used for cryptographic operations such as encryption and signing.

• Authentication: A client and a server can use KEMs as part of an authentication
scheme to establish a shared secret key, which can then be used to authenticate the
client [36]. This shared secret key can then be used to authenticate the client.

• Hybrid encryption: KEMs can be utilized to encrypt a symmetric key. A large amount
of data can be encrypted using the symmetric encryption key, while the KEM key can
be used to encrypt the symmetric encryption key.

• Post-quantum cryptography: KEMs are also utilized in post-quantum cryptography,
which aims to protect against possible quantum computing attacks.

Several metrics can be used to evaluate the performance of a KEM, such as:

• Key size: the size of the KEM-generated shared secret key. In general, a smaller key
size is considered to be more secure and efficient.

• Computational cost: Key generation, encapsulation, and decapsulation demand a
certain amount of computational resources. In general, a lower computational cost is
regarded as more efficient.

• Communication cost: The quantity of information that must be transmitted during en-
capsulation and decapsulation. In general, a lower communication cost is considered
more efficient.

• Security: The level of security provided by the KEM is typically measured in terms
of the number of required operations to compromise the system. In general, a higher
level of security is considered to be more secure.

• Error rate: the frequency of errors that occur during key generation or encryp-
tion/decryption. A lower error rate is generally regarded as more trustworthy.

• Time expense: time required for the key generation, encapsulation, and decapsulation
operations. In general, a lower time cost is considered more efficient.

In this paper, we present our proposed methodology for measuring and comparing
the performance of different KEMs using the liboqs [37]. Our methodology aims to provide
a comprehensive evaluation of KEM algorithms, considering metrics such as security
level, computational cost, and time cost. The motivation behind developing our proposed
methodology resulted from a necessity for a standardized and reliable approach to evaluate
KEM algorithms. The evaluation based on a comprehensive set of evaluation metrics
considered real-world performance scenarios on the two most-widely used operating
systems. Our methodology aimed to provide an adequate foundation for evaluating the
effectiveness of KEMs and making appropriate decisions.

Our proposed methodology offers several unique features. These include:

• Comprehensive evaluation metrics: We considered a range of evaluation metrics,
including key size, computational cost, security level, error rate, and time expense.
This comprehensive set of metrics allows for a holistic assessment of KEM algorithms
and enables researchers to understand their performance characteristics from multi-
ple perspectives.

• Improved measurement accuracy: We incorporated optimizations in the measurement
process to enhance accuracy and consistency. By leveraging the liboqs [37] library,
we ensured a standardized implementation and reliable measurement results across
different KEM algorithms.

The following methodology was used to measure the performance of a KEM using
the liboqs [37]:
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• Initialization and configuration: The OQS library was initialized, and the parameters
for the KEM algorithm were set. This included specifying the security level, which
determined the key size and strength of security guarantees.

• Setting up the loop: A loop was set up to perform multiple iterations of the KEM
algorithm, in order to obtain the average time for the performance.

• Key generation: Inside the loop, a random private key and corresponding public key
were generated for the KEM algorithm being tested.

• Timing key pair generation: The time taken to generate the key pair was measured
using the CPU clock. The method was run using the previously generated keys,
and the resulting shared secret was discarded.

• Calculating average time for key pair generation: After the method was run for the
desired number of iterations, the average time taken for the key pair generation was
calculated.

• Timing KEM encapsulation: The time taken to perform the KEM encapsulation was
measured using the CPU clock. The method was run using the previously generated
public key and a secret message.

• Calculating average time for KEM encapsulation: After the method was run for the
desired number of iterations, the average time taken for the KEM encapsulation was
calculated.

• Timing KEM decapsulation: The time taken to perform the KEM decapsulation was
measured using the CPU clock. The method was run using the previously generated
private key and the ciphered secret message.

• Calculating average time for KEM decapsulation: After the method was run for the
desired number of iterations, the average time taken for the KEM decapsulation was
calculated.

• Printing relevant information: The name of the key exchange method, the security level,
the average time, and the CPU clock speed were printed to the console for analysis.

The above steps provide a high-level overview of our methodology. These steps en-
sured that our proposed methodology captured the essential performance characteristics of
KEM algorithms accurately and efficiently. We intended to investigate additional evaluation
metrics in future work. We also wanted to include more diverse and realistic performance
scenarios in order to properly analyze the practical usability of KEM algorithms with TLS.

Overall, the methodology represented in Figure 4 was used for the measurement and
comparison of the performance of different KEM algorithms using the liboqs. Algorithm 1
shows the pseudocode for the implementation of the proposed approach.

Figure 4. Workflow of the methodology for performance evaluation.
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Algorithm 1: Evaluation of PQC algorithms for Windows and Linux.
Input : PQC KEM algorithm variant, number of iteration
Initialize OQS library, and set parameters for KEM algorithm:;
initialize OQS library;
set the security level;
set the key size;
Set up loop for multiple iterations:;
for i = 1 to desired number of iterations do

Generate random private and public keys:;
generate the private key;
generate the corresponding public key;
Time the key pair generation method using CPU clock:;
start CPU clock;
start_time = clock();
run key pair generation method with desired PQC algorithm;
stop CPU clock;
end_time = clock();
Calculate the average time for key pair generation:;
add elapsed time to total time;
elapsed_time = (end_time - start_time)/clocks per seconds;

end
calculate average time = total time/number of iterations;
Time the KEM encapsulation method using CPU clock:;
start CPU clock;
run KEM encapsulation with generated public key and secret message;
stop CPU clock;
Calculate the average time for KEM encapsulation:;
add elapsed time to total time;
calculate average time = total time/number of iterations;
Time the KEM decapsulation method using CPU clock:;
start CPU clock;
run KEM decapsulation with generated private key and cipher secret message;
stop CPU clock;
Calculate the average time for KEM decapsulation:;
add elapsed time to total time;
calculate average time = total time/number of iterations;
Print relevant information to console:;
print name of key exchange method;
print security level;
print average time;
print CPU clock speed;

4. Results
4.1. Classic McEliece

Classic McEliece is a KEM based on the binary Goppa code. Due to the utilization
of Goppa codes, the algorithm has impeccable precision. Every cipher text created with
the encapsulation/encryption function can be successfully decrypted with the decapsula-
tion/decryption function in a completely correct KEM or PKE.

In situations where a public key is frequently reused and does not need to be re-
transmitted for each new communication, the classic McEliece’s performance profile may
be advantageous. Classic McEliece has the smallest cipher text sizes of all NIST PQC
candidates. The liboqs [37] is utilized for evaluating the Classic McEliece OQS parameter.
The parameters and variants of the classic McEliece algorithm are displayed in Table 7.
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Table 7. Parameters of the classic McEliece algorithm.

PQC KEM Algo Public Key
Length (Bytes)

Private Key
Length (Bytes)

Cipher Text
Length (Bytes)

Plain Text
Length (Byte)

Key Exchange
Mechanism

Classic-McEliece-348864 261,120 6542 128 32 X

Classic-McEliece-460896 524,160 13,568 188 32 X

Classic-McEliece-6688128 1,044,992 13,892 240 32 X

Classic-McEliece-6960119 1,047,319 13,908 226 32 X

Classic-McEliece-8192128 1,357,824 14,080 240 32 X

4.2. Bit-Flipping Key Encapsulation

BIKE is a code-based KEM designed to be secure against both classical and quantum
computers. BIKE’s security is based on the difficulty of locating isogenies between elliptic
curves, which is believed to be challenging for both classical and quantum computers. It is
intended to be both efficient and secure, with low communication overhead and robust
security proof. BIKE is also intended to be adaptable, with the capacity to support a wide
variety of key sizes and security levels.

BIKE is one of several post-quantum key exchange algorithms proposed to secure com-
munication against the threat posed by quantum computers. It is undergoing standardiza-
tion by NIST as part of the selection process for a new suite of post-quantum cryptographic
algorithms for widespread use. The BIKE algorithm’s parameters are utilized using the
OQS liboqs [37]. The BIKE algorithm’s parameters and variants are displayed in Table 8.

Table 8. Parameters of BIKE algorithm.

PQC KEM Algo Public Key
Length (Bytes)

Private Key
Length (Bytes)

Cipher Text
Length (Bytes)

Plain Text
Length (Byte)

Key Exchange
Mechanism

BIKE-L1 1541 5223 1573 32 X

BIKE-L3 3083 10105 3115 32 X

4.3. Speed Test of KEMs

For benchmarking the PQC algorithm speed on two widely used operating systems,
Linux and Windows, this study utilized OQS OpenSSL [38], which implements the new
post-quantum (PQ) schemes with AVX2-optimized versions via the OQS liboqs library [37].
Table 9 displays the benchmark speed results for the Linux and Windows operating systems.

Table 9. Performance evaluation results of KEM PQC algorithm.

PQC KEM Algorithm Iterations Time (us): Mean Pop. Stdev CPU Cycles: Mean Pop. Stdev OS

BIKE-L1

KeyGen 23,632 126.95 30.94 394,828 96,251 Linux

Encaps 170,951 17.55 1.59 54,534 4725

Decaps 8676 345.81 9.34 1,075,522 29,006

BIKE-L3

KeyGen 7978 376.07 4.78 1,169,758 14,807 Linux

Encaps 74,536 39.77 0.68 123,643 1613

Decaps 3021 993.16 10.58 3,089,290 32,866
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Table 9. Cont.

PQC KEM Algorithm Iterations Time (us): Mean Pop. Stdev CPU Cycles: Mean Pop. Stdev OS

Classic-McEliece-348864

KeyGen 44 68,329.50 9172.89 212,555,509 28,534,587 Linux

Encaps 299,954 10.002 11.93 31,053 37,102

Decaps 90,678 33.08 21.42 102,840 66,622

KeyGen 7 450,285.71 56,698.99 1,400,325,920 176,409,308 Windows

Encaps 2427 1236.09 668.84 3,844,480 1,668,744

Decaps 3820 785.34 476.68 2,440,878 360,786

Classic-McEliece-460896

KeyGen 15 214,027.33 27,505.35 665,704,430 85,552,062 Linux

Encaps 172,298 17.37 4.27 54,097 13,203

Decaps 36,954 81.18 4.62 252,414 14,341

KeyGen 3 2,017,666.67 847,760.32 6,275,358,263 2,634,750,115 Windows

Encaps 1166 2574.61 1086.72 8,003,019 3,014,273

Decaps 1160 2588.79 1016.61 8,056,956 2,910,747

Classic-McEliece-6688128

KeyGen 11 298,843.18 46,922.60 929,623,294 145,963,810 Linux

Encaps 97,774 30.68 4.43 95,344 13,702

Decaps 28,488 105.31 9.29 327,501 28,858

KeyGen 2 3,427,500.00 1,728,500.00 10,661,500,856 5,373,817,790 Windows

Encaps 796 3772.61 655.33 11,734,948 1,170,274

Decaps 1315 2282.13 534.96 7,096,967 924,538

Classic-McEliece-6960119

KeyGen 10 313,892.00 71,613.75 976,436,744 222,772,222 Linux

Encaps 97,540 30.76 3.46 95,531 10,685

Decaps 32,111 93.43 1.22 290,551 3477

KeyGen 2 1,705,500.00 132,500.00 5,302,732,432 411,536,683 Windows

Encaps 755 3977.48 825.60 12,373,124 2,022,994

Decaps 1308 2294.34 552.78 7,134,395 1,023,687

Classic-McEliece-8192128

KeyGen 9 349,939.22 91,937.66 1,088,568,757 285,994,218 Linux

Encaps 77,449 38.74 3.07 120,376 9427

Decaps 28,877 103.89 2.34 323,066 7162

KeyGen 1 3,099,000.00 0.00 9,635,977,370 0 Windows

Encaps 342 8792.40 2934.10 27,344,689 9,001,910

Decaps 829 3620.02 1365.31 11,256,733 3,966,242

Figure 5 depicts the outcome of the KEM algorithms concerning the number of CPU
cycles required for key generation. On Linux, BIKE algorithm variant BIKE-L1 claiming
NIST Security Level 1 requires few CPU cycles, whereas the classic McEliece variant
classic-McEliece-8192128 claiming NIST Security Level 5 requires many CPU cycles.
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Figure 5. Key generation CPU clocks on Linux.

The graph in Figure 5 demonstrates that, among all BIKE and classic McEliece al-
gorithm variants, the BIKE-L1 variant requires the least amount of CPU clocks for key
generation on the Linux platform. This study raised the possibility that BIKE-L1 is the
most-effective BIKE algorithm version for key generation, especially in scenarios where
key generation performance is a critical factor. Figure 6 depicts a comparison of KEM
algorithms in terms of the CPU cycles required for encapsulation.

Figure 6. Key encapsulation CPU clocks on Linux.

The graph in Figure 6 provides insights into the CPU clock requirements for key
encapsulation of post-quantum cryptographic algorithms on Linux. The graph shows that
the BIKE-L3 variant requires the highest number of CPU clocks for key encapsulation,
while the classic McEliece variant with 128-bit security requires the least. It is worth noting
that the classic McEliece and BIKE variants represent two different classes of post-quantum
cryptographic algorithms. The classic McEliece is based on the McEliece cryptosystem,
which relies on the hardness of decoding random linear codes. On the other hand, BIKE
is a code-based PQC algorithm that is designed to provide a high level of security with
relatively low key sizes.
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The graph also includes key encapsulation data for other variants of the classic
McEliece and BIKE algorithms. These variants offer varying levels of security and perfor-
mance. For example, the classic McEliece-6960119 variant requires significantly fewer CPU
clocks for key encapsulation than the BIKE-L3 variant, but provides a higher level of secu-
rity. Similarly, the BIKE-L1 variant requires fewer CPU clocks for key encapsulation than
the BIKE-L3 variant, but provides a lower level of security. The classic McEliece variant
classic-McEliece-348864 with claimed NIST Security Level 1 requires the fewest CPU cycles
for encapsulation on the Linux operating system, whereas BIKE-L3 with claimed NIST
Security Level 3 requires the most CPU cycles.

Figure 7 depicts the CPU cycles required by KEM algorithms during the decapsulation
procedure. Classic-McEliece-348864 required the fewest CPU cycles during the Linux
decapsulation procedure, while BIKE-L3 required the most.

Figure 7. Key decapsulation CPU clocks on Linux.

The graph in Figure 7 displays various variants of the PQC algorithms, including
the BIKE variants and classic McEliece, and their corresponding CPU clock requirements
for key decapsulation on Linux. Each variant offers a different level of security and
performance and suggests that the classic McEliece variant with 128-bit security may be
the most-efficient option for key decapsulation in cases where low CPU clock requirements
are desirable. It provides valuable information for those seeking to select a post-quantum
cryptographic algorithm for key decapsulation on Linux. The classic McEliece variant with
128-bit security may be a favorable choice for those seeking a balance between security
and efficiency.

Figure 8 depicts the time required to generate public and private keys on Linux using
the KEM algorithms. Classic-McEliece-8192128 has the largest key size in terms of bytes,
as the graph clearly demonstrates. The graph in Figure 8 provides a comparison of the
time required for the key generation of various variants of the BIKE and classic McEliece
post-quantum cryptographic algorithms on Linux. The graph shows that the BIKE-L1
variant from the BIKE algorithm family and the classic-McEliece-348864 variant of classic
McEliece require the lowest time for key generation, while the other variants require a
higher amount of time. This information can be helpful for those seeking to select a post-
quantum cryptographic algorithm for key generation on Linux. The BIKE-L1 and classic
McEliece-348864 variants may be a favorable choice for those seeking faster key generation
times, while the other variants may be suitable for those requiring higher levels of security.
It is important to consider both the security and performance aspects when selecting a
post-quantum cryptographic algorithm, and this graph can provide valuable insights for
making an informed decision.
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Figure 8. Key generation time (us) on Linux.

The time cost required on Linux for encapsulation and decapsulation using PQC
KEM algorithms are represented in Figures 9 and 10, respectively. The graph in Figure 9
provides insights into the time required for key encapsulation of PQC algorithms on Linux.
The graph shows a comparison of all variants of the BIKE and classic McEliece algorithms
with respect to their time requirements for key encapsulation. The classic-McEliece-348864
variant has the lowest time requirements for key encapsulation among all variants, while the
BIKE-L3 variant requires the highest amount of time. According to these results, the classic-
McEliece-348864 variant may be the most-effective for key encapsulation, especially where
speed is a significant consideration.

The results in Figure 10 shed light on the time required for key decapsulation of
post-quantum cryptographic algorithms on Linux. The graph shows that the classic-
McEliece-348864 variant has the lowest time requirements for key decapsulation among
all variants of the classic McEliece algorithm, while the BIKE-L1 variant has the lowest
time requirements among all variants of the BIKE algorithm. It is worth noting that the
classic-McEliece-348864 variant also provides a low security level. BIKE-L3 takes more time
in both the encapsulation and decapsulation processes.

Figure 9. Key encapsulation time (us) on Linux.
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Figure 10. Key decapsulation time (us) on Linux.

Figure 11 depicts the result of classic McEliece variants in terms of the time required for
the key generation process on Windows. The key generation for the variant classic-McEliece-
6688128 with claimed NIST Security Level 5 takes longer on Windows. The graph in
Figure 11 provides insights into the time required for the key generation of classic McEliece
algorithms on Windows, except for the BIKE algorithm, which is not available by default
in the liboqs on Windows. The results show that the classic-McEliece-348864 variant has
the lowest time requirement for key generation, followed by the classic-McEliece-6960119
variant. It is worth noting that, while the other variants have higher time requirements
for key generation, they also provide higher security levels. For instance, the classic-
McEliece-4608960, classic-McEliece-6688128, and classic-McEliece-8192128 variants have
high security levels, but they also require higher CPU clock cycles for key generation.
On the other hand, the classic-McEliece-128 and classic-McEliece-192 variants have low
time requirements for key generation, but provide lower security levels.

Figure 11. Key generation time (us) on Windows.

Figures 12 and 13 depict the time required on Windows for the encapsulation and
decapsulation processes utilizing the PQC KEM algorithms. The classic-McEliece-8192128
algorithm requires significantly more time for both encapsulation and decapsulation.
The graph in Figure 12 shows the comparison of the time required for key encapsulation on
Windows between different variants of the classic McEliece PQC algorithms. The classic-
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McEliece-348864 variant has the lowest time requirements for key encapsulation among
all variants of the classic McEliece algorithm. However, it is important to note that this
variant has the lowest security level. On the other hand, the classic McEliece-8192128
variant has the highest time requirements for key encapsulation, but offers the highest
level of security. Other variants such as classic McEliece-4608960, classic McEliece-6688128,
and classic McEliece-6960119 have intermediate time requirements for key encapsulation
and provide varying levels of security. This graph shows how important it is to carefully
analyze the trade-off between efficiency and security when choosing a specific variation of
a cryptographic algorithm for a specific application in the real world.

Figure 12. Keyencapsulation time (us) on Windows.

Figure 13. Key decapsulation time (us) on Windows.

The graph in Figure 13 shows the comparison of the time required for key decap-
sulation on Windows between different variants of classic McEliece post-quantum cryp-
tographic algorithms. Classic-McEliece-348864 has the least time required for key decap-
sulation while providing adequate security. However, the classic-McEliece-6688128 and
classic-McEliece-6960119 variants showed the same time required for key decapsulation,
but had different security levels. In particular, the classic-McEliece-6960119 had a higher
security level than the classic-McEliece-6688128. Overall, these findings suggest that, while
the classic-McEliece 348864 variant may be the most-efficient in terms of key decapsulation
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time, it may not provide the highest level of security. Therefore, the choice of which variant
to use should depend on the specific security requirements of the system in question.

Figure 14 compares all variants of the classic McEliece PQC KEM algorithm in terms
of the required CPU clocks on Windows. The KEM algorithm classic-McEliece-8192128
requires the maximum CPU cycles for encapsulation and decapsulation on Windows.
The graph in Figure 14 indicates that there is a trade-off between security levels and CPU
clocks required for key generation, as some classic McEliece variants with higher security
levels require significantly fewer CPU clocks for key generation on Windows. This high-
lights the importance of choosing the appropriate post-quantum cryptographic algorithm
based on specific security and performance requirements. Furthermore, it is interesting to
note that the classic McEliece variants generally outperform other post-quantum crypto-
graphic algorithms in terms of key generation efficiency, despite the potential for higher
CPU clock requirements at higher security levels. This suggests that classic McEliece may
be a strong candidate for practical implementation in a post-quantum secure communica-
tion system.

Figure 14. Key generation CPU clocks on Windows.

The graph in Figure 15 depicts the performance of different variants of the classic
McEliece PQC algorithm in terms of key encapsulation statistics with respect to CPU clocks
on Windows and provides valuable insights into the practical efficiency and security of post-
quantum cryptographic algorithms. Among the classic McEliece variants, the most-efficient
variant for key encapsulation is the classic-McEliece-348864, which offers a 128-bit security
level. Meanwhile, the classic-McEliece-6688128 requires the highest number of CPU clocks
for key encapsulation. However, it is also important to note that this variant provides a
very high level of security, offering a 256-bit security level, which is even higher than that
of classic-McEliece-348864. By considering both the performance and security character-
istics of different variants of the classic McEliece algorithm, developers and practitioners
can make informed decisions about the most-appropriate post-quantum cryptographic
algorithm for their needs, taking into account both speed and security requirements.

The graph in Figure 16 shows the performance of different variants of the classic
McEliece PQC algorithm in terms of key decapsulation statistics with respect to CPU clocks
on Windows and provides valuable insights into the practical efficiency and security of
post-quantum cryptographic algorithms. The data indicate that the classic McEliece-348864
is the most-efficient variant for key decapsulation on Windows, with the lowest number of
CPU clocks required for this operation. The 128-bit Level 1 security provided by classic-
McEliece-348864 should be noted. These results have significant consequences for the choice
and use of post-quantum cryptography algorithms in real-world applications, especially
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when key decapsulation speed and security are major considerations. Figures 15 and 16
display identical results for encapsulation and decapsulation, respectively.

Figure 15. Key encapsulation CPU clocks on Windows.

Figure 16. Key decapsulation CPU clocks on Windows.

4.4. Result Comparison

In this study, we evaluated the performance of several variants of the BIKE and classic
McEliece PQC algorithms for KEM in terms of key generation, encapsulation, and decapsu-
lation operations on both Linux and Windows OSs. Table 9 shows the outcomes of the cur-
rent study. Table 10 gives a condensed and collective comparison of the entire study’s find-
ings. The evaluated algorithms variants include BIKE-L1 and BIKE-L3 and five variants of
the classic McEliece scheme with different security levels, namely classic-McEliece-348864,
classic-McEliece-460896, classic-McEliece-6688128, classic-McEliece-6960119, and classic-
McEliece-8192128.

Figure 17 shows the experimental results indicating that classic-McEliece-348864 and
classic-McEliece-460896 are the slowest algorithms in terms of key generation, taking 68.3 s
and 214 s, respectively, on the Linux operating system. However, classic-McEliece-6688128
is the slowest algorithm on the Windows operating system, taking 298.8 s to generate
a key. The BIKE-L1 and BIKE-L3 algorithms are significantly faster, taking 126.95 and
376.07 microseconds to generate a key, respectively, on the Linux operating system. The dif-
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ference in the time required for key generation between the two BIKE algorithms is less
than 0.25% on Linux.

Table 10. Result comparison of KEM PQC algorithm.

Algorithm Key Generation
(Linux)

Key Generation
(Windows) Encapsulation (Linux) Decapsulation (Linux)

BIKE-L1 126.95 µs - 17.55 µs 345.81 µs

BIKE-L3 376.07 µs - 39.77 µs 993.16 µs

Classic-McEliece-348864 68.3 s - - -

Classic-McEliece-460896 214 s - - -

Classic-McEliece-6688128 - 298.8 s - -

Classic-McEliece-6960119 - - - -

Classic-McEliece-8192128 - - - -

Figure 17. Comparison of results.

Regarding encapsulation and decapsulation, BIKE-L1 is the fastest algorithm, tak-
ing 17.55 microseconds to encapsulate a message and 345.81 microseconds to decapsu-
late it, while BIKE-L3 is the slowest, taking 39.77 microseconds to encapsulate a mes-
sage and 993.16 microseconds to decapsulate it. Classic-McEliece-348864 and classic-
McEliece-460896 are faster than classic-McEliece-6688128 in terms of encapsulation and
decapsulation on Linux, but on Windows, the performance of classic-McEliece-348864 and
classic-McEliece-460896 is comparable to that of classic-McEliece-6688128. The graph results
shown in Figures 5–16 demonstrate the comparison of the algorithms variants based on
their performance in terms of key generation, encapsulation, and decapsulation operations.

In conclusion, the results obtained from applying the proposed methodology to dif-
ferent PQC algorithms demonstrated its effectiveness in capturing their performance
characteristics. The results showed that the performance of the PQC algorithms evaluated
in this study vary significantly, depending on the type of operation, the security level,
and the operating system used. Overall, BIKE-L1 and BIKE-L3 are the fastest algorithms,
while classic-McEliece-348864 and classic-McEliece-460896 are the slowest algorithms, par-
ticularly in terms of key generation. Therefore, the choice of a PQC algorithm for KEM
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should be based on the specific requirements of the application, such as the desired level of
security, the type of operation, and the platform.

Unlike the previous research, the results for the current study were obtained using the
latest version of the liboqs v0.7.2. These results are based on all variants of two NIST forth-
round finalists PQC algorithms, which belong to the same family. The experiments were
performed on a standard laptop; specifically, we used a Lenovo IdeaPad 5i Pro 16AMD
with an Intel® Core™ i5-11300H @ 3.11 GHz, NVIDIA® GeForce RTX™ 3050/3050 Ti
Laptop GPU, and 16 GB RAM. We used Ubuntu 22.04.1 LTS and Windows 11 21H2 as the
operating systems for the evaluation. We ensured that the experiments were conducted
under controlled conditions to minimize external factors’ influence on the results.

5. Conclusions

With recent developments in quantum computing, conventional public cryptosystem
become vulnerable, so post-quantum encryption algorithms should be investigated in the
future. NIST has shortlisted several candidates, such as classic McEliece and BIKE, in this
regard, which is yet to be standardized. This study presented the performance comparison
of these two algorithms in terms of key generation, encapsulation, decapsulation, etc.
The evaluation operation revealed valuable insights into the efficiency and practicality
of these algorithms. The classic McEliece algorithm has an extremely large size for the
public key, so it is possible that, in the future, it will not be a viable option. However, it
functions at its highest level of efficiency when it is not required to frequently re-transmit
the public key. In many implementations of the classic McEliece algorithm, the amount of
memory required to store the extremely large key sizes is significantly higher. On Linux,
the BIKE algorithm generates results that are noticeably superior. On Windows, however,
the OQS liboqs does not support it by default. Both classic McEliece and BIKE will be
supported by future TLS handshakes, and their respective levels of performance can be
compared. The results of this research contribute to the ongoing efforts in standardizing
post-quantum encryption algorithms and give vital recommendations for practitioners and
researchers alike. When choosing an algorithm for secure communication, variables such
as key size, performance requirements, and platform compatibility must be considered.
As quantum computing advances, it is critical to monitor and adjust cryptographic systems
to ensure the secrecy and integrity of sensitive data. differential power analysis (DPA) and
differential fault analysis (DFA) attacks are a serious threat to the security of post-quantum
cryptographic algorithms. By combining DPA and DFA attacks, attackers can extract secret
information from cryptographic devices with greater ease. Further studies could focus
on developing new countermeasures for side-channel attacks, including DPA and DFA
attacks, by using techniques such as error detection and correction, fault-tolerant design,
and side-channel masking. Future research might build on this work by investigating
additional post-quantum encryption methods, evaluating their performance on various
operating systems, and addressing real-world deployment circumstances. Ultimately,
the effective development and implementation of post-quantum encryption algorithms
will assure the long-term security of communications in the age of quantum computing,
protecting sensitive data from new threats.
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Acronyms
AES Advanced Encryption Standard
BIKE Bit-flipping Key Encapsulation
CCA Chosen Ciphertext Attack
DFA Differential Fault Analysis
DH Diffie–Hellman
DPA Differential Power Analysis
EC Elliptic Curve
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Discrete Logarithm
ECDSA Elliptic Curve Digital Signature Algorithm
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
ISD Information Set Decoding
KEM Key Encapsulation Mechanism
LWC-SP Lightweight Cryptography Standardization Process
NIST National Institute of Standards and Technology
OQS Open Quantum Safe
OS Operating System
PQ Post-Quantum
PQC Post-Quantum Cryptography
RSA Rivest–Shamir–Adleman
SCAs Side-Channel Attacks
SHA-2 Secure Hashing Algorithm-2
SIG Signatures
TLS Transport Layer Security
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