Análisis de la resiliencia de centros de salud primaria y hospitales de Puerto Rico al ofrecer servicios de salud después de un desastre natural
Tesis Materias > Ciencias Sociales Universidad Internacional Iberoamericana Puerto Rico > Investigación > Tesis Doctorales Cerrado Español La Región de América Latina y el Caribe está expuesta todos los años a una amplia gama de emergencias y desastres naturales de escalas y frecuencias cada vez mayores. El cambio climático ha causado desastres naturales devastadores poniendo en riesgo la salud y la seguridad de las personas con brotes de enfermedades, mortalidad y traumas. En el año 2017 Puerto Rico sufrió el embate del huracán María. Este evento natural fue ubicado en la categoría 4 de la escala Saffir-Simpson con vientos de 155 millas por horas y ráfagas de hasta 200 millas por hora. Afectó todos los sectores, pero el área de salud recibió el golpe más fuerte causando daños severos, ausencia de energía eléctrica y agua potable. Alrededor de 4,645 personas murieron en Puerto Rico debido a las consecuencias del paso del huracán María por la isla. El objetivo principal de esta investigación es analizar la resiliencia de los centros de salud primaria y los hospitales de Puerto Rico al ofrecer servicios de salud después de un desastre natural. Esta investigación es cualitativa y se realizaron grupos focales con: administradores, directores clínicos y oficiales de manejo de emergencias para la recopilación de información. Además, se utilizó el programa Atlas.ti para el análisis de los datos. El estudio demostró cómo los elementos externos e internos que poseen las instituciones de salud pueden influir directa o indirectamente en su capacidad de recuperarse luego de un desastre ambiental. Finalmente, el sector salud debe identificar y analizar el impacto potencial de los desastres naturales. El propósito es fortalecer las estrategias efectivas en el manejo de emergencias para garantizar el acceso y servicio adecuado de salud. metadata Colón López, Evy Marie mail evymarie.colon@doctorado.unib.org (2023) Análisis de la resiliencia de centros de salud primaria y hospitales de Puerto Rico al ofrecer servicios de salud después de un desastre natural. Doctoral thesis, SIN ESPECIFICAR.
Texto completo no disponible.Resumen
La Región de América Latina y el Caribe está expuesta todos los años a una amplia gama de emergencias y desastres naturales de escalas y frecuencias cada vez mayores. El cambio climático ha causado desastres naturales devastadores poniendo en riesgo la salud y la seguridad de las personas con brotes de enfermedades, mortalidad y traumas. En el año 2017 Puerto Rico sufrió el embate del huracán María. Este evento natural fue ubicado en la categoría 4 de la escala Saffir-Simpson con vientos de 155 millas por horas y ráfagas de hasta 200 millas por hora. Afectó todos los sectores, pero el área de salud recibió el golpe más fuerte causando daños severos, ausencia de energía eléctrica y agua potable. Alrededor de 4,645 personas murieron en Puerto Rico debido a las consecuencias del paso del huracán María por la isla. El objetivo principal de esta investigación es analizar la resiliencia de los centros de salud primaria y los hospitales de Puerto Rico al ofrecer servicios de salud después de un desastre natural. Esta investigación es cualitativa y se realizaron grupos focales con: administradores, directores clínicos y oficiales de manejo de emergencias para la recopilación de información. Además, se utilizó el programa Atlas.ti para el análisis de los datos. El estudio demostró cómo los elementos externos e internos que poseen las instituciones de salud pueden influir directa o indirectamente en su capacidad de recuperarse luego de un desastre ambiental. Finalmente, el sector salud debe identificar y analizar el impacto potencial de los desastres naturales. El propósito es fortalecer las estrategias efectivas en el manejo de emergencias para garantizar el acceso y servicio adecuado de salud.
Tipo de Documento: | Tesis (Doctoral) |
---|---|
Palabras Clave: | desastres naturales, huracán María, resiliencia, resiliencia hospitalaria, centro de salud primaria, hospital |
Clasificación temática: | Materias > Ciencias Sociales |
Divisiones: | Universidad Internacional Iberoamericana Puerto Rico > Investigación > Tesis Doctorales |
Depositado: | 26 Sep 2023 23:30 |
Ultima Modificación: | 26 Sep 2023 23:30 |
URI: | https://repositorio.unib.org/id/eprint/4929 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a href="/17844/1/frai-1-1572645.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A systematic review of deep learning methods for community detection in social networks
Introduction: The rapid expansion of generated data through social networks has introduced significant challenges, which underscores the need for advanced methods to analyze and interpret these complex systems. Deep learning has emerged as an effective approach, offering robust capabilities to process large datasets, and uncover intricate relationships and patterns. Methods: In this systematic literature review, we explore research conducted over the past decade, focusing on the use of deep learning techniques for community detection in social networks. A total of 19 studies were carefully selected from reputable databases, including the ACM Library, Springer Link, Scopus, Science Direct, and IEEE Xplore. This review investigates the employed methodologies, evaluates their effectiveness, and discusses the challenges identified in these works. Results: Our review shows that models like graph neural networks (GNNs), autoencoders, and convolutional neural networks (CNNs) are some of the most commonly used approaches for community detection. It also examines the variety of social networks, datasets, evaluation metrics, and employed frameworks in these studies. Discussion: However, the analysis highlights several challenges, such as scalability, understanding how the models work (interpretability), and the need for solutions that can adapt to different types of networks. These issues stand out as important areas that need further attention and deeper research. This review provides meaningful insights for researchers working in social network analysis. It offers a detailed summary of recent developments, showcases the most impactful deep learning methods, and identifies key challenges that remain to be explored.
Mohamed El-Moussaoui mail , Mohamed Hanine mail , Ali Kartit mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Isabel de la Torre Díez mail ,
El-Moussaoui
<a href="/17831/1/s43856-025-01020-4.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Association between blood cortisol levels and numerical rating scale in prehospital pain assessment
Background Nowadays, there is no correlation between levels of cortisol and pain in the prehospital setting. The aim of this work was to determine the ability of prehospital cortisol levels to correlate to pain. Cortisol levels were compared with those of the numerical rating scale (NRS). Methods This is a prospective observational study looking at adult patients with acute disease managed by Emergency Medical Services (EMS) and transferred to the emergency department of two tertiary care hospitals. Epidemiological variables, vital signs, and prehospital blood analysis data were collected. A total of 1516 patients were included, the median age was 67 years (IQR: 51–79; range: 18–103) with 42.7% of females. The primary outcome was pain evaluation by NRS, which was categorized as pain-free (0 points), mild (1–3), moderate (4–6), or severe (≥7). Analysis of variance, correlation, and classification capacity in the form area under the curve of the receiver operating characteristic (AUC) curve were used to prospectively evaluate the association of cortisol with NRS. Results The median NRS and cortisol level are 1 point (IQR: 0–4) and 282 nmol/L (IQR: 143–433). There are 584 pain-free patients (38.5%), 525 mild (34.6%), 244 moderate (16.1%), and 163 severe pain (10.8%). Cortisol levels in each NRS category result in p < 0.001. The correlation coefficient between the cortisol level and NRS is 0.87 (p < 0.001). The AUC of cortisol to classify patients into each NRS category is 0.882 (95% CI: 0.853–0.910), 0.496 (95% CI: 0.446–0.545), 0.837 (95% CI: 0.803–0.872), and 0.981 (95% CI: 0.970–0.991) for the pain-free, mild, moderate, and severe categories, respectively. Conclusions Cortisol levels show similar pain evaluation as NRS, with high-correlation for NRS pain categories, except for mild-pain. Therefore, cortisol evaluation via the EMS could provide information regarding pain status.
Raúl López-Izquierdo mail , Elisa A. Ingelmo-Astorga mail , Carlos del Pozo Vegas mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Ancor Sanz-García mail , Francisco Martín-Rodríguez mail ,
López-Izquierdo
<a href="/17838/1/s41598-025-02008-9.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Botnet detection in internet of things using stacked ensemble learning model
Botnets are used for malicious activities such as cyber-attacks, spamming, and data theft and have become a significant threat to cyber security. Despite existing approaches for cyber attack detection, botnets prove to be a particularly difficult problem that calls for more advanced detection methods. In this research, a stacking classifier is proposed based on K-nearest neighbor, support vector machine, decision tree, random forest, and multilayer perceptron, called KSDRM, for botnet detection. Logistic regression acts as the meta-learner to combine the predictions from the base classifiers into the final prediction with the aim of increasing the overall accuracy and predictive performance of the ensemble. The UNSW-NB15 dataset is used to train machine learning models and evaluate their effectiveness in detecting cyber-attacks on IoT networks. The categorical features are transformed into numerical values using label encoding. Machine learning techniques are adopted to recognize botnet attacks to enhance cyber security measures. The KSDRM model successfully captures the complex patterns and traits of botnet attacks and obtains 99.99% training accuracy. The KSDRM model also performs well during testing by achieving an accuracy of 97.94%. Based on 3, 5, 7, and 10 folds, the k-fold cross-validation results show that the proposed method’s average accuracy is 99.89%, 99.88%, 99.89%, and 99.87%, respectively. Further, the demonstration of experiments and results shows the KSDRM model is an effective method to identify botnet-based cyber attacks. The findings of this study have the potential to improve cyber security controls and strengthen networks against changing threats.
Mudasir Ali mail , Muhammad Faheem Mushtaq mail , Urooj Akram mail , Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Hanen Karamti mail , Imran Ashraf mail ,
Ali
<a class="ep_document_link" href="/17839/1/s41598-025-05028-7.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Enhanced schizophrenia detection using multichannel EEG and CAOA-RST-based feature selection
Schizophrenia is a mental disorder characterized by hallucinations, delusions, disorganized thinking and behavior, and inappropriate affect. Early and accurate diagnosis of schizophrenia remains a challenge due to the disorder’s complex nature and the limitations of state-of-the-art techniques. It is evident from the literature that electroencephalogram (EEG) signals provide valuable insights into brain activity, but their high dimensionality and complexity pose remain key challenges. Thus, our research introduces a novel approach by integrating the multichannel EGG, Crossover-Boosted Archimedes Optimization Algorithm (CAOA), and Rough Set Theory (RST) for schizophrenia detection. It is a four-stage model. In the first stage, Raw EGG data is collected. The data is passed to the next stage, which is called data preprocessing. This is used for artifact removal, band-pass filtering, and data normalization. The preprocessed data passed to the next stage. In the feature extraction stage, feature selection is performed using CAOA. In addition, classification is performed using a Support Vector Machine (SVM) based on features extracted through Multivariate Empirical Mode Function (MEMF) and entropy measures. The data interpretation stage displays the results to the end user using the data interpretation stage. We experimented and tested our proposed model using real EEG datasets. The simulation results prove that the proposed model achieved an average accuracy of 94.9%, sensitivity of 93.9%, specificity of 96.4%, and precision of 92.7%. Thus, our proposed model demonstrates significant improvements over state-of-the-art methods. In addition, the integration of CAOA and RST effectively addresses the challenges of high-dimensional EEG data, helps optimize the feature selection process, and increases accuracy. In future work, we suggest incorporating large-size datasets that include more diverse patient groups and refining the model with advanced machine-learning models and techniques.
Mohammad Abrar mail , Abdu Salam mail , Ahmed Albugmi mail , Fahad Al-otaibi mail , Farhan Amin mail , Isabel de la Torre mail , Thania Chio Montero mail , Perla Aracely Arroyo Gala mail ,
Abrar
<a href="/17827/1/fspor-1-1614186.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Methodology and content for the design of basketball coach education programs: a systematic review
Background: The increasing complexity of basketball and the need for optimal decision-making in order to maximize competitive performance highlight the necessity of specialized training for basketball coaches. This systematic review aims to compile, synthesize, and integrate international research published in specialized journals on the training of basketball coaches and students, examining their characteristics and needs. Specifically, it analyzes the content, technical-tactical actions, and methodologies used in practice and education programs to determine which essential parameters for their technical and tactical development. Methods: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA®) guidelines and the PICOS® model until January 30, 2025, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus, and Scopus databases. The risk of bias was assessed and the PEDro scale was used to analyze methodological quality. Results: A total of 14,090 articles were obtained in the initial search. After inclusion and exclusion criteria, the final sample was 23 articles. These studies maintained a high standard of quality. This revealed data on the technical-tactical actions addressed in different categories; the profiles, characteristics, and influence of coaches on player development; and the approaches, teaching methods, and evaluation methodologies used in acquiring knowledge and competencies for the professional development of basketball coaches. Conclusions: Adequate theoretical and practical training for basketball coaches is essential for player development. Therefore, training programs for basketball coaches must integrate technical-tactical, physical, and psychological knowledge with the acquisition of skills and competencies that are refined through practice. This training should be continuous, more specialized, and comprehensive, focusing on understanding and constructing knowledge that supports the professional growth of basketballers. Additionally, training should incorporate digital tools and informal learning opportunities, with blended learning emerging as the most effective methodology for this purpose.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Julio Calleja-González mail , Jeisson Mosquera-Maturana mail , Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es,
Alemany Iturriaga