Diseño de una metodología basada en principios ágiles para la implementación de un nuevo CRM de clase mundial en un laboratorio farmacéutico de la República del Paraguay.
Tesis Materias > Ciencias Sociales Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster Cerrado Español A través de este trabajo de tesis se expone el diseño de una metodología basada en principios ágiles, para la implementación de un CRM (Customer Relationship Management) en un laboratorio farmacéutico de la república del Paraguay. El fin que se busca para el diseño de esta metodología basada en principios ágiles para la implementación de un CRM (Customer Relationship Management), es que las empresas que la adopten puedan transitar un proceso ágil, robusto y concreto, que les permita reducir los tiempos de implementación gracias a la eficiencia de la misma, y esto les brinde una ventaja competitiva. Esta ventaja competitiva puede darse en primer lugar, por salir al mercado con un sistema estratégico de apoyo al área comercial en un menor tiempo, y en segundo lugar, por una reducción sustancial de las horas dedicadas al proyecto, por parte de las personas involucradas a este. Para la elaboración de esta guía metodológica, se ha empleado en primer lugar y como metodología para fomentar la creatividad y la innovación, el Design Thinking, y como metodología ágil para el proceso de ejecución de la metodología en sí, se ha empleado Scrum, junto con sus roles, sus artefactos y sus ceremonias. El diseño de investigación elegido para elaborar este trabajo ha sido el Diseño de Investigación Descriptiva, debido a que se ha utilizado el instrumento del tipo encuesta para recabar información sobre del grado de conocimiento y penetración acerca de los CRM (Customer Relationship Management) y las metodologías ágiles, con foco en Scrum y en Design Thinking. Se ha tomado como población al área comercial de un laboratorio farmacéutico y la muestra fue de aproximadamente el 18% de la población. La estructura utilizada para el diseño de la metodología fue establecida en cinco fases, las cuales son: relevamiento, capacitación, segmentación, targeting e implementación. Los resultados logrados han sido satisfactorios considerando la ejecución del piloto dentro de la fase de prototipado. Técnicamente es un proyecto de diseño viable. Así mismo, los indicadores financieros dan cuenta que la metodología es financieramente viable también. Y a nivel de riesgos, los mismos han sido analizados y los tres riesgos detectados con nivel alto, han sido considerados y mitigados. metadata Sabatini Barragán, Germán Alberto mail german.sabatini@fapasapl.com.py (2022) Diseño de una metodología basada en principios ágiles para la implementación de un nuevo CRM de clase mundial en un laboratorio farmacéutico de la República del Paraguay. Masters thesis, SIN ESPECIFICAR.
Texto completo no disponible.Resumen
A través de este trabajo de tesis se expone el diseño de una metodología basada en principios ágiles, para la implementación de un CRM (Customer Relationship Management) en un laboratorio farmacéutico de la república del Paraguay. El fin que se busca para el diseño de esta metodología basada en principios ágiles para la implementación de un CRM (Customer Relationship Management), es que las empresas que la adopten puedan transitar un proceso ágil, robusto y concreto, que les permita reducir los tiempos de implementación gracias a la eficiencia de la misma, y esto les brinde una ventaja competitiva. Esta ventaja competitiva puede darse en primer lugar, por salir al mercado con un sistema estratégico de apoyo al área comercial en un menor tiempo, y en segundo lugar, por una reducción sustancial de las horas dedicadas al proyecto, por parte de las personas involucradas a este. Para la elaboración de esta guía metodológica, se ha empleado en primer lugar y como metodología para fomentar la creatividad y la innovación, el Design Thinking, y como metodología ágil para el proceso de ejecución de la metodología en sí, se ha empleado Scrum, junto con sus roles, sus artefactos y sus ceremonias. El diseño de investigación elegido para elaborar este trabajo ha sido el Diseño de Investigación Descriptiva, debido a que se ha utilizado el instrumento del tipo encuesta para recabar información sobre del grado de conocimiento y penetración acerca de los CRM (Customer Relationship Management) y las metodologías ágiles, con foco en Scrum y en Design Thinking. Se ha tomado como población al área comercial de un laboratorio farmacéutico y la muestra fue de aproximadamente el 18% de la población. La estructura utilizada para el diseño de la metodología fue establecida en cinco fases, las cuales son: relevamiento, capacitación, segmentación, targeting e implementación. Los resultados logrados han sido satisfactorios considerando la ejecución del piloto dentro de la fase de prototipado. Técnicamente es un proyecto de diseño viable. Así mismo, los indicadores financieros dan cuenta que la metodología es financieramente viable también. Y a nivel de riesgos, los mismos han sido analizados y los tres riesgos detectados con nivel alto, han sido considerados y mitigados.
Tipo de Documento: | Tesis (Masters) |
---|---|
Palabras Clave: | CRM, Metodologías Ágiles, Scrum, Design Thinking. |
Clasificación temática: | Materias > Ciencias Sociales |
Divisiones: | Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster |
Depositado: | 03 May 2024 23:30 |
Ultima Modificación: | 03 May 2024 23:30 |
URI: | https://repositorio.unib.org/id/eprint/3077 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a class="ep_document_link" href="/17794/1/s41598-025-95836-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Accurate solar and photovoltaic (PV) power forecasting is essential for optimizing grid integration, managing energy storage, and maximizing the efficiency of solar power systems. Deep learning (DL) models have shown promise in this area due to their ability to learn complex, non-linear relationships within large datasets. This study presents a systematic literature review (SLR) of deep learning applications for solar PV forecasting, addressing a gap in the existing literature, which often focuses on traditional ML or broader renewable energy applications. This review specifically aims to identify the DL architectures employed, preprocessing and feature engineering techniques used, the input features leveraged, evaluation metrics applied, and the persistent challenges in this field. Through a rigorous analysis of 26 selected papers from an initial set of 155 articles retrieved from the Web of Science database, we found that Long Short-Term Memory (LSTM) networks were the most frequently used algorithm (appearing in 32.69% of the papers), closely followed by Convolutional Neural Networks (CNNs) at 28.85%. Furthermore, Wavelet Transform (WT) was found to be the most prominent data decomposition technique, while Pearson Correlation was the most used for feature selection. We also found that ambient temperature, pressure, and humidity are the most common input features. Our systematic evaluation provides critical insights into state-of-the-art DL-based solar forecasting and identifies key areas for upcoming research. Future research should prioritize the development of more robust and interpretable models, as well as explore the integration of multi-source data to further enhance forecasting accuracy. Such advancements are crucial for the effective integration of solar energy into future power grids.
Oussama Khouili mail , Mohamed Hanine mail , Mohamed Louzazni mail , Miguel Ángel López Flores mail miguelangel.lopez@uneatlantico.es, Eduardo García Villena mail eduardo.garcia@uneatlantico.es, Imran Ashraf mail ,
Khouili
<a href="/17573/1/s41598-025-96332-9.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel hybrid transfer neural network for wheat crop growth stages recognition using field images
Wheat is one of the world’s most widely cultivated cereal crops and is a primary food source for a significant portion of the population. Wheat goes through several distinct developmental phases, and accurately identifying these stages is essential for precision farming. Determining wheat growth stages accurately is crucial for increasing the efficiency of agricultural yield in wheat farming. Preliminary research identified obstacles in distinguishing between these stages, negatively impacting crop yields. To address this, this study introduces an innovative approach, MobDenNet, based on data collection and real-time wheat crop stage recognition. The data collection utilized a diverse image dataset covering seven growth phases ‘Crown Root’, ‘Tillering’, ‘Mid Vegetative’, ‘Booting’, ‘Heading’, ‘Anthesis’, and ‘Milking’, comprising 4496 images. The collected image dataset underwent rigorous preprocessing and advanced data augmentation to refine and minimize biases. This study employed deep and transfer learning models, including MobileNetV2, DenseNet-121, NASNet-Large, InceptionV3, and a convolutional neural network (CNN) for performance comparison. Experimental evaluations demonstrated that the transfer model MobileNetV2 achieved 95% accuracy, DenseNet-121 achieved 94% accuracy, NASNet-Large achieved 76% accuracy, InceptionV3 achieved 74% accuracy, and the CNN achieved 68% accuracy. The proposed novel hybrid approach, MobDenNet, that synergistically merges the architectures of MobileNetV2 and DenseNet-121 neural networks, yields highly accurate results with precision, recall, and an F1 score of 99%. We validated the robustness of the proposed approach using the k-fold cross-validation. The proposed research ensures the detection of growth stages with great promise for boosting agricultural productivity and management practices, empowering farmers to optimize resource distribution and make informed decisions.
Aisha Naseer mail , Madiha Amjad mail , Ali Raza mail , Kashif Munir mail , Aseel Smerat mail , Henry Fabian Gongora mail henry.gongora@uneatlantico.es, Carlos Eduardo Uc Ríos mail carlos.uc@unini.edu.mx, Imran Ashraf mail ,
Naseer
<a href="/17593/1/s41598-025-95448-2.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Client engagement solution for post implementation issues in software industry using blockchain
In the rapidly advanced and evolving information technology industry, adequate client engagement plays a critical role as it is very important to understand the client’s concerns, and requirements, have the records, authorizations, and go-ahead of previously agreed requirements, and provide the feasible solution accordingly. Previously multiple solutions have been proposed to enhance the efficiency of client engagement, but they lack traceability, trust, transparency, and conflict in agreements of previous contracts. Due to the lack of these shortcomings, the client requirement is getting delayed which is causing client escalations, integrity issues, project failure, and penalties. In this study, we proposed the UniferCollab framework to overcome the issues of collaboration between various teams, transparency, the record of client authorizations, and the go-ahead on previous developments by implementing blockchain technology. We store the data on the permissible network in the proposed approach. It allows us to compile all the requirements and information shared by clients on permissible blockchain to secure a large amount of data which enhances the traceability of all the requirements. All the authorizations from the client generate push notifications for any changes in their current system executed through smart contracts. It removes the ambiguity between various development teams if the client has only shared the requirement with one team. The data is stored in the decentralized network from where information is gathered which resolves the traceability, transparency, and trust issues. Lastly, evaluations involved a total of 800 hypertext transfer protocol (HTTP) requests tested using Postman with blockchain block sizes ranging from 0.568 KB to 550 KB and an average size increase of 280 KB was observed as new blocks were added. The longest chain in the network was observed during 800 repetitions of blockchain operations. Latency analysis revealed that delays in processing HTTP requests were influenced by decentralized node processing, local machine response times, and internet bandwidth through various experiments. Results show that the proposed framework resolves all client engagement issues in implementation between all stakeholders which enhances trust, and transparency improves client experience and helps us manage disputes effectively.
Muhammad Shoaib Farooq mail , Khurram Irshad mail , Danish Riaz mail , Nagwan Abdel Samee mail , Ernesto Bautista Thompson mail ernesto.bautista@unini.edu.mx, Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Imran Ashraf mail ,
Farooq
<a class="ep_document_link" href="/17785/1/nutrients-17-01414-v2.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
This Special Issue of Diet and Nutrition: Metabolic Diseases showcases cutting-edge research exploring the intersection between nutrition, dietary patterns, and public health. The contributions in this collection involve both fundamental and applied research, offering new insights into how nutrition can combat the growing global burden of non-communicable diseases [1]. The studies in this issue emphasize the critical role that diet plays in promoting metabolic health, preventing chronic diseases, and improving overall quality of life. In recent years, nutrition has become a central focus in global health efforts, with a growing body of evidence demonstrating its impact on both individual and population-level outcomes [2,3]. This Special Issue encompasses several key themes, including the role of dietary interventions in managing metabolic disorders, the importance of nutrient timing and quality, and the broader implications of sustainable dietary practices.
Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,
Elío Pascual
<a class="ep_document_link" href="/17792/1/s41598-025-97561-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Ensemble stacked model for enhanced identification of sentiments from IMDB reviews
The emergence of social media platforms led to the sharing of ideas, thoughts, events, and reviews. The shared views and comments contain people’s sentiments and analysis of these sentiments has emerged as one of the most popular fields of study. Sentiment analysis in the Urdu language is an important research problem similar to other languages, however, it is not investigated very well. On social media platforms like X (Twitter), billions of native Urdu speakers use the Urdu script which makes sentiment analysis in the Urdu language important. In this regard, an ensemble model RRLS is proposed that stacks random forest, recurrent neural network, logistic regression (LR), and support vector machine (SVM). The Internet Movie Database (IMDB) movie reviews and Urdu tweets are examined in this study using Urdu sentiment analysis. The Urdu hack library was used to preprocess the Urdu data, which includes preprocessing operations including normalizing individual letters, merging them, including spaces, etc. concerning punctuation. The problem of accurately encoding Urdu characters and replacing Arabic letters with their Urdu equivalents is fixed by the normalization module. Several models are adopted in this study for extensive evaluation of their accuracy for Urdu sentiment analysis. While the results promising, among machine learning models, the SVM and LR attained an accuracy of 87%, according to performance criteria such as F-measure, accuracy, recall, and precision. The accuracy of the long short-term memory (LSTM) and bidirectional LSTM (BiLSTM) was 84%. The suggested ensemble RRLS model performs better than other learning algorithms and achieves a 90% accuracy rate, outperforming current methods. The use of the synthetic minority oversampling technique (SMOTE) is observed to improve the performance and lead to 92.77% accuracy.
Komal Azim mail , Alishba Tahir mail , Mobeen Shahroz mail , Hanen Karamti mail , Annia A. Vázquez mail annia.almeyda@uneatlantico.es, Angel Olider Rojas Vistorte mail angel.rojas@uneatlantico.es, Imran Ashraf mail ,
Azim