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Abstract

Autonomous unmanned aerial vehicles (UAVs) offer cost-effective and flexible
solutions for a wide range of real-world applications, particularly in hazardous
and time-critical environments. Their ability to navigate autonomously, com-
municate rapidly, and avoid collisions makes UAVs well suited for emergency
response scenarios. However, real-time path planning in dynamic and unpre-
dictable environments remains a major challenge, especially in confined tunnel
infrastructures where accidents may trigger fires, smoke propagation, debris,
and rapid environmental changes. In such conditions, conventional preplanned



or model-based navigation approaches often fail due to limited visibility, nar-
row passages, and the absence of reliable localization signals. To address these
challenges, this work proposes an end-to-end emergency response framework
for tunnel accidents based on Multi-Agent Reinforcement Learning (MARL).
Each UAV operates as an independent learning agent using an Independent
Q-Learning paradigm, enabling real-time decision-making under limited compu-
tational resources. To mitigate premature convergence and local optima during
exploration, Grey Wolf Optimization (GWO) is integrated as a policy-guidance
mechanism within the reinforcement learning (RL) framework. A customized
reward function is designed to prioritize victim discovery, penalize unsafe behav-
ior, and explicitly discourage redundant exploration among agents. The proposed
approach is evaluated using a frontier-based exploration simulator under both
single-agent and multi-agent settings with multiple goals. Extensive simulation
results demonstrate that the proposed framework achieves faster goal discovery,
improved map coverage, and reduced rescue time compared to state-of-the-art
GWO-based exploration and random search algorithms. These results high-
light the effectiveness of lightweight MARL-based coordination for autonomous
UAV-assisted tunnel emergency response.

Keywords: Robotic systems; drones; multi-agents system; path finding; reinforcement
learning; tunnel hazards; unmanned aerial vehicles

1 Introduction

Over the past decades, a wide range of natural and man-made disasters, including
earthquakes, floods, explosions, and large-scale fires, have caused severe loss of human
life and critical infrastructure. Such events frequently lead to collapsed buildings and
damaged tunnel systems, trapping victims benecath debris and creating extremely haz-
ardous conditions for emergency response teams. Rapid and effective search-and-rescue
(SAR) operations are therefore essential; however, conventional response methods are
often constrained by structural instability, toxic environments, and limited accessi-
bility. In this context, UAVs have emerged as a promising technological solution for
enhancing SAR operations and improving disaster response efficiency.

Tunnels and underground facilities have been widely developed to support modern
transportation and urban infrastructure. Despite their economic and logistical impor-
tance, tunnels are fully enclosed environments, which significantly increase risk during
emergency situations. In the event of a tunnel fire, trapped individuals often have lim-
ited escape routes, resulting in a high likelihood of casualties. For example, a tunnel
fire in the Shanxi Yanhou Tunnel in 2014 resulted in 40 fatalities and 12 injuries [1].
Such incidents highlight the critical importance of tunnel fire safety management and
efficient emergency response mechanisms.

Tunnel environments pose multiple safety hazards, including fire, smoke propaga-
tion, structural collapse, electrical failures, and the presence of hazardous materials.
Among these, smoke inhalation remains one of the leading causes of fatalities in tun-
nel accidents. Fires in confined spaces can rapidly generate dense smoke, severely



reducing visibility and causing asphyxiation. Furthermore, toxic gases released during
combustion can induce disorientation and respiratory distress, significantly worsening
survival prospects for trapped individuals.

The enclosed nature of tunnels also complicates firefighting and rescue efforts.
Limited ventilation accelerates heat accumulation and smoke spread, while narrow pas-
sages and structural damage restrict responder mobility. Emergency personnel must
often operate under extreme uncertainty, with incomplete situational awareness and
rapidly evolving conditions.

Several real-world incidents further illustrate these challenges. In July 2018, a fire
occurred in the Tianjin Binhai Tunnel in China due to the ignition of flammable
goods transported by a truck, resulting in injuries to tunnel users and firefighters
[2]. Similarly, the Sasago Tunnel ceiling collapse in Japan on December 2, 2012,
resulted in multiple vehicles being crushed and at least nine fatalities, highlighting
the catastrophic consequences of tunnel structural failures and the challenges faced
by emergency responders in such confined spaces [3]. These cases emphasize the
need for robust safety protocols, continuous infrastructure monitoring, and intelligent
emergency response systems capable of operating in hazardous tunnel environments.

Effective tunnel emergency response requires responders to navigate complex,
maze-like infrastructures under conditions of low visibility and dynamic obstruction.
Traditional path-planning methods often struggle in such scenarios due to smoke,
debris, and partial structural collapse. Additionally, satellite-based navigation sys-
tems such as GPS are unreliable or unavailable in underground environments, further
complicating localization and routing tasks.

Most existing navigation and rescue approaches rely heavily ou accurate environ-
mental models or prior knowledge of tunnel layouts [4, 5]. In real-world emergencies,
however, such information is frequently incomplete, outdated, or entirely unavailable.
Reinforcement learning (RL) offers a viable alternative by enabling autonomous agents
to adapt their behavior through interaction with the environment rather than relying
on predefined models [6]. RL has been extensively applied to UAV control and robotic
navigation tasks [7, 8], including trajectory tracking, path following, and disturbance
mitigation. For example, RL-based {raineworks have been proposed for UAV motion
planning with suspended loads |9], stable trajectory generation [10], adaptive PID
control [11], and disturbance compensation in complex airflow conditions [12]. Coop-
erative UAV path-planning approaches, such as Dubins-based methods [13], have also
been explored, although they often struggle with rapid local environmental changes.

Despite these advances, the application of RL to autonomous UAV-based disaster
response particularly for mission planning, victim search, and cooperative exploration
in confined tunnel environments remains relatively underexplored [14, 15]. Moreover,
many existing approaches rely on computationally intensive models, explicit inter-
agent communication, or centralized learning architectures, which may limit their
applicability in time-critical rescue operations.

Motivated by these challenges, this work focuses on developing a lightweight, adap-
tive, and cooperative multi-agent learning framework tailored for tunnel emergency
response. The proposed approach emphasizes real-time feasibility, efficient exploration,
and safety-aware decision-making under partial observability. In the proposed scheme



GWO has been used with RL as policy despite others GWO based RL algorithms
where they used GWO for managing exploration and exploitation ratio [16].
The main contributions of this work are summarized as follows:

® Development of a MARL framework for autonomous tunnel emergency response
and victim search.

® Adoption of an IQL paradigm to enable real-time decision-making under limited
computational resources.

® Integration of frontier-based exploration with graph-based path planning to effi-
ciently navigate partially known environments.

® Design of a reward mechanism that discourages redundant exploration, penalizes
unsafe behavior, and prioritizes victim discovery.

® Formulation of observable and hidden state representations to address partial
observability in cooperative multi-agent settings.

® Comprehensive simulation-based evaluation demonstrating improved exploration
efficiency, rescue time, and collision avoidance compared to baseline methods.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 introduces the theoretical foundations and background concepts. Section 4
presents the proposed methodology. Section 5 discusses the experimental setup and
performance evaluation. Finally, Section 6 concludes the paper and outlines directions
for future research.

2 Literature Review

Deep reinforcement learning (DRL) has drawn significant attention among researchers
in Unmanned Aerial Vehicle (UAV) systems, as it addresses the growing need for
autonomous aerial vehicles capable of executing complex tasks in dynamic and uncer-
tain environments. Recent literature explores how DRL enhances UAV guidance,
navigation, and control (GNC), particularly in unpredictable or GPS-denied scenarios.

For instance, [17] presents an asynchronous deep deterministic policy gradient
(ADDPG) method for mapless navigation with mobile robots in challenging envi-
ronments, demonstrating the applicability of RL to autonomous navigation tasks. In
another study, [18] proposes a technique that integrates external memory, enabling
neural network models to perform mapping, localization, and navigation decision-
making within a unified framework. This configuration allows simultaneous position
estimation and map construction alongside continuous control.

For confinuous control in autonomous navigation, [19] utilizes sparse LiDAR
inputs and relative target locations within a DRL framework, resulting in improved
path-planning efficiency and robustness. Moreover, [20] introduces an integrated com-
munication and control architecture based on DDPG for UAV swarm formation
management, enabling enhanced control precision and collision avoidance. Despite
these advancements, [21] report that DRL models face challenges related to gener-
alization, safety, training stability, and computational overhead, which hinder their
deployment in real-world, safety-critical environments.



While general-purpose UAVs demonstrate strong DRL-enabled navigation and
control capabilities, deploying them in mission-critical operations such as search and
rescue (SAR) introduces additional challenges. SAR missions often involve cluttered,
GPS-denied environments and strict time constraints, requiring UAVs to exhibit high
levels of autonomy, reliability, and adaptability. Consequently, recent research has
focused on UAV systems tailored specifically for SAR applications.

In this context, [22] propose a UAV-based SAR framework that leverages received
signal strength (RSS) measurements and a Q-learning-based strategy to detect indoor
victims. Their results show that directional antennas improve convergence speed and
localization accuracy compared to omnidirectional antennas. Similarly, Donnelly et
al. [23] model UAV-based SAR using partially observable Markov decision processes
(POMDPs) and deep Q-networks (DQNs), demonstrating improved performance over
heuristic methods in complex environments. However, such approaches typically rely
on deep learning architectures and centralized training, which may limit real-time
applicability.

Maritime UAV-based SAR missions pose further challenges due to large opera-
tional areas and rapidly changing conditions. To address this, Wu et al. [24] propose a
hybrid genetic algorithm and RL (GA-RL) approach for path planning, embedding Q-
learning into evolutionary optimization. Their method achieves improved convergence
and solution quality compared to standard optimization techniques. For wilderness
SAR, Bhattacharya et al. [25] develop a modular DRL framework for 3D UAV naviga-
tion and person detection using curriculum learning, achieving high accuracy in both
semi-autonomous and guided navigation tasks.

In multi-agent UAV systems, Wang et al. [26] present a (-learning-based 3D
deployment framework that enables multiple UAVs to dynainically reposition for opti-
mal coverage, outperforming traditional clustering approaches. Nevertheless, many
existing multi-agent studies primarily focus on coverage or communication efficiency
rather than rescue prioritization or redundant exploration avoidance.

Recent studies have also explored heterogeneous and cooperative multi-agent sys-
tems for dynamic monitoring and patrolling tasks. For example, the UAV-UGV
cooperative framework presented in [27] investigates coordinated patrolling and energy
management in urban environments, demonstrating how task allocation and inter-
agent cooperation can improve system endurance and coverage. While effective, such
approaches typically rely on explicit coordination strategies and stable communica-
tion, which may be difficult to guarantee in confined tunnel environments affected by
smoke, fire, or structural damage.

UAYV path planning under obstacle-rich environments has also been explored using
bio-inspired optimization techniques. Ant Colony Optimization (ACO), inspired by
collective ant foraging behavior, has been widely applied to robotic and UAV path
planning [28-31]. These methods have been shown to generate collision-free trajec-
tories and optimize routes under various constraints. However, their performance is
often sensitive to parameter tuning and may degrade in highly dynamic or partially
observable environments.

Classical robotic exploration techniques provide important foundations for
autonomous navigation. Frontier-based exploration, introduced by Yamauchi [32],



enables robots to expand their knowledge of unknown environments by targeting
boundaries between explored and unexplored regions. Probabilistic mapping and
SLAM-based approaches [33] further improve navigation by maintaining belief dis-
tributions over the environment. These methods, however, are primarily designed for
single-agent settings and lack adaptive coordination mechanisms for cooperative rescue
scenarios.

RL-based exploration has traditionally relied on Q-learning and policy gradient
methods. Q-learning, introduced by Watkins and Dayan [34], provides a model-free
mechanism for learning optimal actions in discrete state-action spaces. Policy gradient
methods [35] extend learning to continuous action spaces but generally require higher
computational resources. In multi-agent contexts, cooperative exploration strategies
have been investigated by Cao et al. [36], demonstrating improved coverage effi-
ciency, though without explicit consideration of real-time rescue constraints or victim
prioritization.

In time-critical disaster scenarios, balancing exploration and exploitation becomes
particularly important. To address this challenge, recent work has proposed
infrastructure-assisted learning frameworks that leverage edge intelligence and
communication-aware optimization. For instance, [37] integrates UAV-mounted recon-
figurable intelligent surfaces (RIS) and high-altitude platforms (HAPs) to optimize
disaster response under strict latency constraints. While such approaches improve
exploration efficiency, they require sophisticated communication infrastructure and
centralized coordination, limiting their applicability in underground or tunnel-based
rescue operations. Scalability in large-scale systems has also been addressed using deep
reinforcement learning in communication-centric domains. For example, [38] employs
a DRL-based relaying election mechanism to improve energy efficiency in large IoT
networks. Although DRL-based solutions offer scalahility and performance benefits,
they typically require extensive training data, powerful computational resources, and
centralized training paradigms, which may not be feasible for real-time emergency
response in tunnel environments.

Overall, the literature highlights significant progress in UAV navigation, RL, and
multi-agent coordination. However, most existing approaches rely on deep or cen-
tralized learning architectures, explicit communication strategies, or computationally
intensive optimization methods. Limited attention has been given to lightweight
MARL frameworks that operate under real-time constraints, minimize redundant
exploration, and ensure safety in confined tunnel environments. These limitations
motivate the proposed IQL-based multi-agent framework, which emphasizes com-
putational efficiency, implicit coordination through reward design, and practical
applicability for tunnel emergency response.

3 Preliminaries

This section introduces the fundamental concepts and mathematical tools required to
understand the proposed multi-agent rescue framework. Specifically, we review graph-
based shortest-path planning, artificial potential fields for collision avoidance, and the
RL foundations underpinning the IQL paradigm adopted in this work.



3.1 Graph-Based Shortest Path Planning

Graph-based path planning is widely used in robotic navigation to compute collision-
free and efficient routes in structured environments. In the context of tunnel rescue, the
environment is represented as a weighted graph, where nodes correspond to discrete
spatial locations and edges denote traversable connections between them [39)].

Let G = (V, E) be a weighted graph, where V is the set of vertices and E is the
set of edges. Each edge (u,v) € E is associated with a non-negative weight w(u, v)
representing traversal cost.

Given a source node s € V, Dijkstra’s algorithm computes the shortest path dis-
tance from s to all other nodes in V by iteratively expanding the closest unvisited
node and relaxing adjacent edges. The algorithm is formally defined as:

Dijkstra(G, s) = {d(v) | v € V'}, (1)
where d(v) denotes the minimum cumulative cost from s to node v.
In this work, shortest-path computation is used to guide agents toward frontier
cells during exploration, enabling efficient navigation through partially explored tunnel
environments.

3.2 Artificial Potential Fields for Collision Avoidance

Artificial Potential Fields (APFs) are a classical motion planning technique used to
generate collision-free trajectories by modeling the environment as a combination of
attractive and repulsive forces. Goals exert attractive forces, while obstacles and other
agents exert repulsive forces[40].

Let p = (z,y) denote the current position of an agent and Dyoq the target position.
The total potential field is defined as:

U(p) = Uatt(p) + UT'ep'p)a (2)
where the attractive potential is given by:
1 2
Uatt(P) = ;kattHP - pgoalH ) (3)
and the repulsive potential generated by obstacles is defined as:
Nobs ( 1 1 1 2 .
Urep(p) = 5 { 2Frer (o =)+ o= Panell <ranss
i—1 |0, otherwise.

Here, pops; denotes the position of the i-th obstacle, 74, is the influence radius,
and kg, krep are scaling constants.

In the proposed framework, collision avoidance is not enforced explicitly through
force-based control but is incorporated implicitly through reward penalties inspired
by APF principles.

3.3 Markov Decision Process Formulation

RL problems are commonly modeled using a Markov Decision Process (MDP), defined
by the tuple:
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where:

S is the set of states,

A is the set of actions,

P(s'|s,a) is the state transition probability,
R(s,a,s') is the reward function,

v € 10,1] is the discount factor.

At each time step t, an agent observes state s;, executes action a;, receives reward
Ri11, and transitions to state s;i1.
3.4 Value Functions and Bellman Equations

The state-value function under policy 7 is defined as:

VW(S) = Eﬂ- lz ’}/tRH_l | So =S
t=0
Similarly, the action-value function is given by:

(oo}

Q" (s,a) =Ex lz Y Ri1 | So =s,40 = a] . (6)
t=0

The optimal action-value function satisfies the Bellman optimality equation:

Q*(s,a) = ZP(8/|S,G) {R(s,a,s’) + 7 max Q*(sﬂa’)} . (7)

3.5 Q-Learning

Q-learning is a model-free RL algorithm that iteratively approximates the opti-
mal action-value function Q*(s,a) without requiring prior knowledge of transition
probabilities[41]. The update rule is defined as:

Qsts i)  Qlse,ar) + o [Rewy +ymax Qsrs1,0) = Qlswsar)| . (8)

where « € (0, 1] 1s the learning rate.

3.6 IQL in Multi-Agent Systems

In IQL, each agent maintains its own Q-table and learns independently by treating
other agents as part of the environment. Although this introduces non-stationarity,
IQL remains computationally lightweight and suitable for real-time applications.

In this work, IQL is adopted to ensure scalability and real-time feasibility in tun-
nel rescue scenarios, avoiding the high computational cost associated with DRL or
centralized training paradigms.



3.7 Grey Wolf Optimizer

The GWO is a population-based metaheuristic inspired by the social hierarchy and
cooperative hunting behavior of grey wolves. In GWO, candidate solutions are cate-
gorized into four hierarchical groups: alpha («), beta (3), delta (4), and omega (w),
where «, 3, and 0 represent the three best solutions guiding the search process, while
w represents the remaining candidates[42, 43].

Let X(t) denote the position of a search agent at iteration ¢, and let X,, X3, and
X denote the positions of the three best solutions. The position update mechanism
in GWO is defined as:

D, =|C- X, — X(t)|, k< {a,p,é} (9)
=X — Ay -Dyg (10)

1
X(t+1)= 3 (X0, + X5+ X5) (11)

where A, = 2a-r; —a, Cp, = 2-rg, and ry,r2 € [0,1] are random vectors. The
parameter a decreases linearly from 2 to 0 over iterations, allowing a smooth transition
from exploration to exploitation.

GWO has been widely adopted for path planning and optimization tasks due
to its simplicity, fast convergence, and low computational overhead. However, stan-
dalone GWO methods are prone to premature convergence in complex or dynamic
environments.

In this work, GWO is not employed as an independent optimizer. Instead, its
exploration behavior is integrated with RL to guide policy exploration and mitigate
local optima. This hybridization preserves the lightweight nature of tabular learning
while improving search diversity in complex tunnel rescue environments.

4 Material & Methods

Figure 1 illustrates the overall scenaiio exploitation process of the proposed tunnel
emergency response framework.

4.1 Frontier-Based Cooperative Exploration

A frontier-based exploration strategy is employed to enable efficient navigation and
mapping of tunnel environments. Initially, the environment is represented as a dis-
cretized occupancy grid where all cells are marked as unexplored. As agents traverse
the environment, onboard sensors continuously update the grid based on newly
observed information.

Frontier cells, defined as the boundary between explored and unexplored regions,
are selected as exploration targets. Agents compute collision-free paths toward these
frontier cells using the A* algorithm while avoiding static and dynamic obstacles.
Exploration continues until all reachable frontiers are exhausted or all victims are
successfully located.
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Fig. 1: Scenario exploitation pictorial explanation of the proposed multi-agent rescue
system.

4.2 Multi-Agent Rescue System Overview

The proposed rescue system consists of multiple autonomous UAV /robot agents
operating cooperatively in a shared tunnel environment. Each agent independently
performs navigation, victim detection, obstacle avoidance, and map updating. Cooper-
ation is achieved implicitly through shared environmental feedback rather than explicit
inter-agent communication.

The performance of the system is evaluated using the following criteria:

number of victims successfully rescued,
coverage of the tunnel environment,
avoidance of redundant exploration,
collision-free navigation.

Accordingly, the global objectives are defined as:
Maximize: w; — number of rescued victims, (12)

Minimize: ws — total unexplored area. (13)

The corresponding utility function is formulated as:
u(w, zg.r) = argmax (w1 — wa) . (14)

The proposed framework adopts an IQL paradigm, where each agent maintains its
own Q-table and updates it independently based on local observations. This design
choice is motivated by the strict computational and latency constraints of real-time
tunnel rescue operations.

Unlike centralized training or DRL approaches, IQL avoids neural network infer-
ence, replay buffers, and extensive training requirements, making it suitable for



deployment in resource-constrained and time-critical environments. Potential non-
stationarity associated with IQL is mitigated through reward shaping and structured
frontier-based task decomposition[42].

The state space S consists of partially observable states s' and partially hidden
states s2. Observable states represent the agent’s position:

st = [z, ¢y] € R?, (15)

while hidden states correspond to victim locations:
s = [vg,v,] € R2. (16)
The complete state vector of an agent at time ¢ is:

s = [s1,57] € R (17)

Each agent p observes the environment using exteroceptive sensors. The observa-
tion space at time t is defined as:

of = [c, o, N TP] € RIFENV D) (18)

where CEN_p ) denotes the relative positions of other agents.

At each time step, an agent can perform one of nine discrete actions corresponding
to grid-based movement, as shown in Figure 2. The action space 1s defined as:

a? € R% (19)

1 + 2 & 3
M o0 o (@7/;
4 A8 6 IR
LA )
s
G =i o I i

Fig. 2: Grid-based action space for agent movement.

To enable adaptation to dynamic tunnel conditions such as blocked passages,
smoke, or fire spread, GWO is integrated into the exploration policy of RL. Rather
than acting as a standalone optimizer, GWO biases action selection during exploration
to prevent premature convergence.

This sustained exploration mechanism ensures that agents continue adapting their
policies online as the environment evolves, allowing exploration to proceed until all
victims are rescued and the operation is completed.



A customized reward function is designed to promote cooperative exploration,
safety, and efficiency:

+r,, if a new victim is discovered,
—rg, if battery is depleted or agent fails,

rP =< =)\, if an explored cell is revisited, (20)
—k, if the next cell is occupied by another agent,

—n, otherwise.

The parameters are set as r, = 10, 71 =20, A =1, k = 3, and n = 1.

The duplicate-exploration penalty discourages redundant exploration, while the
collision penalty ensures safety during learning. Since agent positions are known in the
centralized simulation environment, collisions are detected prior to action execution.

Each agent updates its Q-table using the standard Q-learning update rule:

Q(st;ar) < Q(st,ar) + o |1 + ’)’H}ZE}XQ(SHL a’) — Q(st,at)} : (21)

Action selection follows an e-greedy strategy augmented with GWO-guided
exploration.

Algorithm 1 GWO-Guided IQL for Multi-Agent Rescue

1: Initialize Q-tables Q,(s,a) for all agents
2: Initialize learning rate «, discount factor
3: while rescue mission not completed do
4:  for each agent p do

5 Observe state s}

6 Select action a} using e-greedy + GWO guidance
7 Execute a! and receive reward ¥
8
9

Update Q-table using )-learning rule
end for
10: end while

The proposed framework relies on well-established convergence properties of
Q-learning and frontier-based exploration. Reward shaping and shared environ-
mental feedback promote stable cooperative behavior and reduce non-stationarity.
These properties summarize known results rather than introducing new theoretical
guarantees.

4.3 Property 1: Bounded Exploration and Exploitation

Statement: Under standard Q-learning conditions, the proposed IQL framework
maintains a bounded balance between exploration and exploitation during the learning
process, preventing premature convergence while ensuring policy improvement over
time.



Explanation: Each agent updates its action-value function using the classical
Q-learning update rule:

Q(st,at) < Q(s¢,a1) + ay |req1 + 'YH};}XQ(St+1a a') — Q(st, at)} ) (22)

where a; denotes the learning rate and <y is the discount factor.
When the learning rate satisfies the Robbins-Monro conditions,

oo o0
E oy =00 and g ai < oo,
=0

t=0

and when state-action pairs are sufficiently explored through an e-greedy policy, the
Q-values are known to converge toward stable estimates in stationary environments.

In the proposed framework, exploration is further regulated through reward shap-
ing and step penalties, which discourage excessive wandering while still allowing
agents to explore unvisited regions. This results in a bounded exploration-exploitation
trade-off that supports stable learning behavior without introducing additional
computational complexity.

4.4 Property 2: Frontier Coverage Behavior

Statement: The integration of frontier-based exploration with RL leads to progres-
sive reduction of unexplored regions while prioritizing victim discovery in partially
observable environments.

Explanation: Let E(t) and U(¢) denote the sets of explored and unexplored cells
at time step t, respectively. Frontier cells are defined as:

F(t)={ceU(t) | c € Boundary(E(t))}, (23)

representing the interface between known and unknown regions.

By selecting actions that guide agents toward frontier cells, the exploration process
incrementally expands FE(t) while reducing U(¢). In the proposed reward formula-
tion, revisiting previously explored cells incurs a penalty, which discourages redundant
exploration and promotes efficient coverage of new areas.

As exploration progresses, the number of frontier cells naturally decreases:

|F(t)] =0 as t— oo,

indicating saturation of the reachable environment. Simultaneously, victim discov-
ery events are reinforced through positive rewards, ensuring that exploration remains
goal-directed rather than purely spatial. This behavior supports systematic coverage
without requiring explicit global coordination.



4.5 Property 3: Cooperative Utility Improvement

Statement: The collective utility of the multi-agent system improves as individ-
ual agents learn policies that are shaped by shared environmental feedback and
complementary exploration behaviors.

Explanation: Let vl denote the reward received by agent p at time ¢, and define
the cumulative system-level reward as:

C

Rtotal(t) - era (24)

p=1

where C' is the number of agents.

Although each agent maintains an independent Q-table, coordination emerges
implicitly through shared environmental states and reward signals, such as penalties
for collisions and redundant exploration. As agents learn to avoid overlapping paths
and unsafe actions, the collective reward accumulated over an episode increases.

The expected utility over a finite horizon T' can be expressed as:

E[U] = E

T
Z Rtotal(t)‘| ) (25)
t=0

which improves as agents adopt policies that balance individual objectives with
system-level efficiency. This property reflects cooperative behavior emerging from
decentralized learning rather than guaranteeing global optimality, making it suitable
for real-time rescue operations.

5 Performance Evaluation

This section presents an extensive evaluatioi of the proposed GWO-guided IQL frame-
work in both single-agent and multi-agent tunnel rescue scenarios. The evaluation
focuses on exploration efficiency, rescue effectiveness, safety, and execution time under
complex and constrained environments. To ensure fair and reliable comparisons, all
experiments are conducted under identical environmental settings and averaged over
20 independent simulation runs.

Two representative environments are considered: (i) a maze environment with a sin-
gle agent and a single rescue goal, and (ii) a road-map maze environment with multiple
agents and multiple rescue goals. These environments emulate realistic tunnel acci-
dent conditions characterized by limited visibility, narrow pathways, and dynamically
distributed victims.

5.1 Evaluation Environments

Single-Agent, Single-Goal Maze Environment

To evaluate baseline navigation and exploration capability, three different maze con-
figurations with varying obstacle densities, corridor structures, and goal locations are



employed. These environments are illustrated in Figure 3. In each configuration, the
agent is represented by a blue box, while the rescue target (victim) is shown as a green
box.

The environments include multiple dead ends and narrow passages, posing
challenges for exploration strategies that suffer from premature convergence or inef-
ficient search behavior. The agent is equipped with onboard sensors to perceive
nearby obstacles and free space, enabling partial observability similar to real tunnel
conditions.

The agent follows a Q-learning-based policy to balance exploration and exploita-
tion. Successful victim discovery yields a positive reward, while collisions with obstacles
incur penalties. Additionally, a step penalty of —1 is applied at each time step to
discourage unnecessary movement and promote efficient navigation. This reward struc-
ture ensures comprehensive environment coverage while prioritizing timely victim
rescue and collision avoidance.
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Fig. 3: Single-agent exploration in three maze environments with one rescue target.



Multi-Agent, Multi-Goal Road-Map Maze Environment

To assess cooperative behavior and scalability, three road-map maze environments
with varying sizes, obstacle distributions, and victim locations are used. These environ-
ments are shown in Figure 4. Victims are depicted in red, obstacles in black, explored
regions in white, frontier regions in light blue, and agents in green.

Multiple agents operate simultaneously to locate and rescue all victims. Each agent
employs the IQL paradigm with an individual Q-table, while coordination is achieved
implicitly through shared environment updates in a centralized simulation framework.
This setting reflects practical rescue operations where a command center maintains
global situational awareness while individual agents act autonomously.

Positive rewards are assigned for successful victim rescues, while penalties are
applied for collisions, redundant exploration, and inefficient movements. A step penalty
of —1 further encourages agents to minimize rescue time. This environment provides
a comprehensive testbed for evaluating cooperative efficiency, safety during learning,
and robustness in complex tunnel rescue scenarios.
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Fig. 4: Multi-agent exploration in road-map maze environments with multiple rescue targets.



The proposed framework is compared against the following baseline methods:

Random Search,

Utility-Based Cooperative Exploration (UCE),
Cooperative Multi-Agent Exploration (CME),
GWO-based exploration.

All algorithms are evaluated under identical environmental conditions, agent
counts, and termination criteria. Each experiment is repeated 20 times to mitigate
randomness and ensure statistical reliability. Performance is measured in terms of
explored area, number of iterations to achieve rescue goals, total execution time, and
collision avoidance.

5.2 Single-Agent Performance Analysis

Figure 5 illustrates the comparative performance of the proposed framework and
baseline methods in single-goal environments. The UCE approach exhibits the lowest
exploration efficiency, requiring a significantly higher number of steps to reach the goal.
This behavior is primarily attributed to its lack of adaptive exploration mechanisms.
The GWO-based approach demonstrates improved exploration compared to Ran-
dom Search but still suffers from premature convergence in certain maze configura-
tions. In contrast, the proposed GWO-guided IQL framework consistently achieves
faster goal discovery and higher map coverage efficiency across all environments.
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Fig. 5: Performance comparison in single-goal environments.




Quantitative results are summarized in Table 1. The proposed approach achieves
the rescue goal using only 51 iterations and 199 seconds, significantly outperforming
Random Search (72 iterations, 280 seconds) and GWO (81 iterations, 313 seconds).
These gains highlight the effectiveness of reward shaping, step penalties, and GWO-
guided exploration in accelerating convergence and improving real-time performance.

Table 1: Single goal evaluation.

Algorithm Explored Explored per | Iteration/step| Iteration/step Time (s)
per 50 itera- | 100 itera- | for goal to explore whole
tion/step tion/step map

Random search algorithm | 34 57 154 989 389

(single goal (1))

GWO (single goal (1)) 39 61 127 965 391

OUR (single goal (1)) 2 85 98 785 310

Random search algorithm | 21 49 537 1334 465

(single goal (2))

GWO (single goal (2)) 26 60 156 1287 141

OUR (single goal (2)) 35 72 395 961 379

Random search algorithm | 41 89 72 782 280

(single goal (3))

GWO (single goal (3)) 43 78 81 795 313

OUR (single goal (3)) 45 91 51 673 199

5.3 Multi-Agent Performance Analysis

Figure 6 presents the performance comparison in multi-goal environments. The pro-
posed framework consistently outperforms CME and GWO across all scenarios in
terms of both rescue time and exploration efficiency. Notably, the proposed method
identifies shorter collective paths that cover all victims, which can be reused for
subsequent detailed rescue operations.

Table 2 further demonstrates the scalability of the proposed framework. With
four agents, the proposed approach completes the rescue task in 754 seconds using
798 iterations, compared to 876 iterations for Random Search and 950 iterations for
GWO. When only two agents are used, the proposed method again achieves superior
performance, completing the mission in 780 seconds, compared to 1056 seconds and
1120 seconds for Random Search and GWO, respectively.

These improvements are attributed to implicit coordination through reward
shaping, duplicate-exploration penalties, and collision avoidance mechanisms, which
collectively enhance cooperative efficiency without introducing communication over-
head.
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Fig. 6: Performance comparison in multi-goal environments.



Table 2: Multi goal evaluation.

Algorithm Explored Explored Iteration/step| Iteration/step| Time (s) | # of agents
per 100 | per 200 | for all goals to explore
itera- itera- whole map
tion/step tion/step
Random search algo- | 190 350 876 1938 1015 4
rithm (multi goals (1))
GWO (multi goals (1)) 218 343 950 2032 1119 4
OUR (multi goals (1)) 265 427 798 1358 754 4
Random search algo- | 133 219 1035 1763 950 4
rithm (multi goals (2))
GWO (multi goals (2)) 158 231 965 1581 387 1
OUR (multi goals (2)) 209 327 734 1402 809 4
Random search algo- | 115 202 691 1565 1056 2
rithm (multi goals (3))
GWO (multi goals (3)) 127 191 718 1742 1120 2
OUR (multi goals (3)) 164 238 605 1268 780 2




5.4 Discussion and Practical Implications

The experimental results demonstrate that the proposed GWO-guided IQL framework
consistently outperforms Random Search, CME, UCE, and standalone GWO-based
methods across both single-agent and multi-agent rescue scenarios. These improve-
ments are observed in terms of reduced rescue time, fewer iterations to achieve goals,
and higher exploration efficiency, while maintaining collision-free navigation.

A key factor contributing to this performance gain is the integration of GWO into
the exploration policy rather than as a standalone optimizer. By guiding exploration
without replacing the underlying RL process, the proposed approach avoids premature
convergence to suboptimal paths, which is a common limitation of greedy or purely
heuristic-based exploration strategies. This sustained exploration capability is par-
ticularly important in tunnel environments, where dynamic changes such as blocked
passages or newly accessible regions can significantly alter optimal rescue routes during
operation.

The use of IQL with tabular representation plays a critical role in enabling real-time
feasibility. Unlike DRL or centralized-training paradigms, the proposed framework
avoids neural network inference and extensive training overhead, allowing agents
to make rapid decisions based on lightweight table lookups. This design choice is
well aligned with the operational constraints of emergency response systems, where
computational resources, energy availability, and response time are limited.

Another important observation from the results is the effectiveness of reward shap-
ing in achieving implicit coordination among agents. Penalizing duplicate exploration
and collisions discourages inefficient or unsafe behaviors without requiring explicit
inter-agent communication or task assignment. As demonstrated in multi-agent exper-
iments, this mechanism enables agents to naturally distribute themselves across the
environment, reducing redundant coverage and accelerating collective victim discovery.

From a safety perspective, embedding collision avoidance directly into the reward
function ensures that unsafe actions are penalized during learning, allowing agents
to internalize safety constraints early in tlie training process. This approach reduces
the likelihood of collision-prone policies emerging, which is essential for operation in
narrow tunnel environments where maneuvering space is constrained.

In practical deployment scenarios, the proposed framework can be integrated
into centralized tunnel monitoring and command systems, where a global situational
map is maintained and shared with multiple autonomous agents. The lightweight
nature of the learning algorithm makes it suitable for onboard implementation on
resource-constrained platforms, while the centralized simulation assumption provides a
foundation for future extensions that incorporate communication delays, sensor noise,
or decentralized coordination mechanisms.

Despite its advantages, the proposed framework has certain limitations. The cur-
rent implementation assumes idealized sensing and reliable global map updates, which
may not fully reflect real-world tunnel conditions characterized by sensor noise, com-
munication disruptions, or partial observability. Additionally, while the tabular IQL
approach is effective for the evaluated environments, scaling to very large or continuous
state spaces may require function approximation or hierarchical learning strategies[44].



Overall, the results suggest that the proposed GWO-guided IQL framework offers
a practical and effective solution for time-critical tunnel rescue operations. Through
balancing exploration efficiency, safety, and computational feasibility, the framework
provides a strong foundation for real-world emergency response systems and opens
avenues for future research on decentralized coordination, adaptive communication
strategies, and integration with physical robot platforms.

6 Conclusion

This paper presented a lightweight multi-agent reinforcement learning (MARL) frame-
work for autonomous UAV-assisted emergency response in tunnel accident scenarios.
The proposed approach employs an Independent Q-Learning (IQL) paradigm aug-
mented with frontier-based exploration and policy-level guidance from Grey Wolf
Optimization (GWO) to enable efficient, real-time decision-making under partial
observability and dynamic environmental conditions. Extensive simulation results
across both single-agent and multi-agent environments demonstrate that the proposed
framework consistently achieves faster victim discovery, improved map coverage, and
reduced overall rescue time when compared with baseline approaches such as random
search and standalone GWO-based exploration. In particular, the results show that
the proposed reward design effectively discourages redundant exploration, balances
exploration and exploitation, and enhances cooperative behavior among agents with-
out requiring explicit inter-agent communication. These characteristics are especially
important in confined tunnel environments, where communication may be unreliable
and rapid response is critical. From a practical perspective, the proposed method
emphasizes computational efficiency and decentralized execution, making it suit-
able for real-time deployment in emergency scenarios where hardware resources and
response time are constrained. By relying on tabular learning and implicit coordination
through reward shaping, the framework avoids the heavy training and infrastructure
requirements associated with deep or centralized reinforcement learning methods.

Future work will focus on extending the iramework to three-dimensional tunnel
models, incorporating realistic sensor noise and communication delays, and validating
the approach in high-fidelity simulators or real-world testbeds. Additionally, hybrid
architectures that combine lightweight IQL with selective deep reinforcement learning
components or adaptive communication strategies will be explored to further improve
scalability and robustness in large and highly dynamic rescue operations.
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