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Introduction: Jackfruit cultivation is highly affected by leaf diseases that reduce
yield, fruit quality, and farmer income. Early diagnosis remains challenging due to
the limitations of manual inspection and the lack of automated and scalable
disease detection systems. Existing deep-learning approaches often suffer from
limited generalization and high computational cost, restricting real-time
field deployment.

Methods: This study proposes CNNAttLSTM, a hybrid deep-learning architecture
integrating Convolutional Neural Networks (CNN), Long Short-Term Memory
(LSTM) units, and an attention mechanism for multi-class classification of algal
leaf spot, black spot, and healthy jackfruit leaves. Each image is divided into ordered
56x56 spatial patches, treated as pseudo-temporal sequences to enable the LSTM
to capture contextual dependencies across different leaf regions. Spatial features
are extracted via Conv2D, MaxPooling, and GlobalAveragePooling layers; temporal
modeling is performed by LSTM units; and an attention mechanism assigns
adaptive weights to emphasize disease-relevant regions. Experiments were
conducted on a publicly available Kaggle dataset comprising 38,019 images,
using predefined training, validation, and testing splits.

Results: The proposed CNNAttLSTM model achieved 99% classification accuracy,
outperforming the baseline CNN (86%) and CNN—-LSTM (98%) models. It required
only 3.7 million parameters, trained in 45 minutes on an NVIDIA Tesla T4 GPU, and
achieved an inference time of 22 milliseconds per image, demonstrating high
computational efficiency. The patch-based pseudo-temporal approach improved
spatial—temporal feature representation, enabling the model to distinguish subtle
differences between visually similar disease classes.

Discussion: Results show that combining spatial feature extraction with temporal
modeling and attention significantly enhances robustness and classification
performance in plant disease detection. The lightweight design enables real-
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time and edge-device deployment, addressing a major limitation of existing
deep-learning techniques. The findings highlight the potential of CNNAttLSTM
for scalable, efficient, and accurate agricultural disease monitoring and broader
precision agriculture applications.

KEYWORDS

plant disease detection, jackfruit leaf classification, attention mechanisms, CNNAttLSTM
model, precision agriculture, agricultural Al, disease diagnosis

1 Introduction

Jackfruit is highly susceptible to a plethora of diseases due to
widespread planting, which harms the volume and quality of the
fruit and the economic well-being of farming communities. These
challenges in early disease detection, as seen, are attributed to the
lack of automated disease detection technology and the forced use
of manual detection methods that are mostly labour-intensive and
subject to errors. Although some existing research has examined
computer vision and classification algorithms for detecting fruit
diseases, they have limited generalisation capabilities and are not
capable of diagnosing all pathologies of jackfruits. An Al-based
agro-medical system that combines computer vision and machine
learning has high potential for diagnosing plant diseases, but
additional tuning is needed to be applied in the field of precision
agriculture (Habib et al., 2022). Deep learning has revolutionised
the concept of plant health monitoring by addressing the limitations
and inefficiencies of traditional manual inspections. Convolutional
Neural Networks (CNNs) are among the methods that achieve
better results in detecting plant diseases, especially when trained
using transfer learning to attain peak performance accuracy.

Nevertheless, current models are often marred by a
computational drawback that restricts their practicality for real-
time applications. MobileNetV2, a high-performance and
lightweight model, is an ideal alternative, as it enhances accuracy
and scalability to automatically identify diseases in agricultural
settings (Banarase and Shirbahadurkar, 2024). This is essential in
reducing losses in yields and enhancing sustainable agriculture
practices by detecting and managing plant disease conditions at
an early stage. Eye-level inspection is labour-intensive and
inaccurate. Deep Convolutional Neural Networks (DCNNs) are
an effective method for obtaining high-precision image-based
disease diagnosis. The current systems, nevertheless, are
computationally heavy, thus restricting their uptake. Early disease
detection can be achieved using new DCNN designs, which
minimise agricultural losses and make yield production
sustainable (Rajalakshmi et al., 2024). Accurate identification of
banana leaf diseases will be a crucial element in preventing crop
losses and promoting agricultural sustainability. Deep learning
models, particularly CNNs, have enabled the automatic
classification of diseases. Nevertheless, extracting features is
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challenging due to the presence of noisy images and similar
symptoms. The hybrid and multi-scale feature learning
techniques, along with the hybrid activation function, can
enhance detection robustness and accuracy, thereby advancing
disease detection in the field of agriculture (Deng et al., 2024).
Skip connection CNNs enable further optimisation of disease-
specific feature extraction, thereby increasing the detection rate.
The majority of current models address the problem of
macronutrient deficiency; however, recent advances in the field of
deep learning enable the identification of micronutrient imbalances,
allowing for the application of precision agriculture principles and
effective nutrient management practices (Sunitha et al., 2024).
CNNs have been successfully applied to solve these diseases, as
well as transfer learning, in mango leaves, thereby addressing some
of the key challenges in precision agriculture. Nevertheless, the
computational efficiency and extensive generalisation to different
environmental conditions need further research (Pratap and
Krishna, 2024). By combining DenseNet-121 and VGGI19 with
PSO, the classification performance can be quite strong; however,
optimising the hyperparameters in real-time is a challenging task.
Moreover, Heuristic-based optimisation, combined with deep
mutual learning, is a promising and important possibility for
scalable and high-precision agricultural disease detection (Vijay
and Pushpalatha, 2024). Deep learning has been useful in the
diagnosis of plant diseases, and different types of models (CNNs,
YOLO, and Vision Transformers) are highly classified.
Nevertheless, their models require well-annotated training
samples, and they are highly sensitive to the quality of the data
and the representational variety. Dataset augmentation and
enhancing model generalisation to novel environmental
conditions and disease forms should be given high priority in the
future (Mustofa et al., 2024). Jackfruit leaf pathologies pose a serious
risk to crop yields, commercial fruit standards, and economic
returns, especially for India, which is the world’s largest producer
of jackfruits. The existing detection techniques are ineffective,
subjective, and non-scalable. While CNN with FL provides a
promising platform for disease detection without compromising
data privacy, there is a challenge in maintaining consistency in a
global model across heterogeneous datasets and ensuring
robustness in real-world scenarios (Vats et al., 2024). Federated
learning with CNNs provides the facility of decentralising disease
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severity classification, maintaining data privacy. Although there has
been advancement regarding it, the model’s validity across various
climatic conditions and accurate estimation of disease severity
remain challenging (Vats, 2024). The following are the
contributions to our research:

* Development of a CNNAttLSTM architecture integrating
convolutional neural networks, long short-term memory
units, and an attention mechanism to enhance spatial-
temporal feature representation for multi-class jackfruit
leaf disease classification.

* The novelty lies in the synergistic combination of spatial
feature extraction, temporal context modelling, and
selective attention weighting, enabling the network to
emphasize diagnostically relevant temporal states while
suppressing less informative ones.

* This design facilitates superior spatial-temporal feature
representation, resulting in markedly improved
discrimination between disease categories with
overlapping visual symptoms and enhancing overall
classification robustness in multi-class jackfruit leaf
disease detection.

2 Literature review

Recent advancements in computer vision and deep learning
have greatly enhanced the automated detection of plant leaf diseases
across various crops, forming a strong foundation for studies
focused on identifying diseases in jackfruit leaves. Various other
works have investigated different neural network models, transfer
learning methods, and optimisation techniques to identify diseases
of mango, citrus, apple, tomato, and strawberry leaves with higher
accuracy and swiftness. The work in (Gulavnai and Patil, 2019)
utilised 8,853 images from the original mango dataset for disease
identification, applying transfer learning techniques to the ResNet-
50, ResNet-34, and ResNet-18 architectures. The accuracy after
testing was 91.50%, and the results were guaranteed to be
performance-reliable, as multiple partitions of the data were
performed. In (Janarthan et al., 2020), the authors introduced an
innovative deep metric learning approach for the classification of
citrus fruit and leaf diseases, using a dataset comprising 609 images
of citrus fruits and leaves. The new technique incorporates a
Siamese network with K-Means clustering and neural
classification, achieving an accuracy of 95.04% and demonstrating
better speed and efficiency compared to existing deep models.
Scientists in (Pham et al.,, 2020) propose a more advanced ANN
model for the classification of mango leaf diseases from 450 images.
The model employs a metaheuristic-based feature selection
approach, achieving an accuracy of 89.41%—significantly higher
compared to the three CNN models tested, which achieved
accuracies of 79.92%, 78.64%, and 84.88%, respectively.

For the classification of citrus diseases (Khattak et al., 2021),
proposed a CNN architecture with embedded feature processing
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layers for PlantVillage and Citrus datasets. The developed model
attained an accuracy of 94.55%, surpassing the performance of
existing detection methods available at that time. Likewise (Alsayed
et al,, 2021), implemented a ResNetV2 architecture, along with
Adam optimisation, for classifying apple foliar diseases on the
benchmark dataset of Plant Pathology 2020. It achieved a peak
classification performance of 94.7% with transfer learning on VGG-
16, InceptionV3, and MobileNetV2. There has been considerable
advancement in deep learning approaches towards plant disease
diagnosis in recent times. A CNN-based model attained an accuracy
0f 98.49% in identifying diseases from a dataset of 3,000 tomato leaf
images, surpassing conventional machine learning methods
through the integration of segmentation and preprocessing
procedures (Trivedi et al., 2021). Moreover, in the case of
strawberry leaf scorch detection, 13,512 images were tested,
showing that the VGG-16 and EfficientNet-B3 models outperform
AlexNet and SqueezeNet, with EfficientNet-B3 achieving a
classification accuracy of up to 98.49% (Abbas et al,, 2021).

However, transfer learning methods have proven to be the most
promising in identifying citrus diseases. A study achieved 95.7%
accuracy through the use of image enhancement techniques,
including combination stretching and feature merging, along with
the Whale Optimisation Algorithm for feature extraction (Rehman,
2021). For the same purpose, YOLOvV5 outperformed Scaled-
YOLOv4 (94.2% mAP) in performance upon testing on 16,580
images of solanaceous plants from PlantVillage and field-collected
data (Hidayah et al., 2022). Comparative studies of CNN
architectures expose key performance traits. Experiments with
14,181 fruit leaf images showed AlexNet (accuracy of 86.8%) was
marginally better than SqueezeNet (accuracy of 86.6%) under
colour, grayscale, and black-and-white image conditions
(Gaikwad et al., 2022).

The DenseNet-121 model attained an accuracy of 98.97% in
identifying six developmental stages of citrus canker disease,
demonstrating strong predictive capability for disease progression
(Zainab et al., 2023). Combining computer vision with machine
learning has been successful, as attested by an 85.86% accurate
hybrid CNN-SVM model for pomegranate disease diagnosis and
quality classification (Kazi and Kutubuddin, 2023). Optimal
performance was achieved with an IoT-based system that
integrated DenseNet201, RSNN, and the Spotted Hyena
Optimiser, yielding 98.60% accuracy and setting a new
benchmark for applications in sustainable agriculture (Eman
et al,, 2024). In the following section, the findings of related work
in this domain are summarised and presented in Table 1.

3 Proposed methodology

As illustrated in Figure 1, the proposed methodology for
jackfruit leaf disease classification employs a CNNAttLSTM
architecture developed to perform multi-class classification of
algal leaf spot, black spot, and healthy leaf categories. The process
begins with data preprocessing and input dataset preparation,
followed by feature extraction using a CNN comprising sequential
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TABLE 1 Overview of existing studies on plant disease detection and classification.

10.3389/fpls.2025.1720471

Ref. Year Dataset used Techniques or methods used Evaluation of parameters
(Gulavnai and Patil, . ResNet50, ResNet34, ResNet18 (Transfer
2019 8,853 mango leaf images . 91.50% accuracy
2019) Learning)
Si Network + K-M Clusteri 95.04% high d & effici
(Janarthan et al., 2020) 2020 609 citrus fruit and leaf images famese Network + e‘ans ustering + o accuracy (< 1g er speed & elliciency
Neural Classifier than existing models)
89.41% tperformed 3 CNN
(Pham et al., 2020) 2020 450 mango leaf images ANN + Metaheuristic Feature Selection 6 accuracy (outperforme
models: 79.92%, 78.64%, 84.88%)
CNN with integrated feat i 94.559 better than existi
(Khattak et al., 2021) 2021 Citrus and PlantVillage datasets With infegratec Teatnre processing % accuracy (-e er than existing
layers techniques)
ResNetV2 + Adam Optimizer (Transfer
(Alsayed et al., 2021) 2021 Plant Pathology 2020 dataset Learning: VGG16, InceptionV3, 94.7% classification accuracy
MobileNetV2)
98.49% tperfi d traditional
(Trivedi et al., 2021) 2021 3,000 tomato leaf images CNN with segmentation & preprocessing o aceuracy (ouMi);r ormed traditiona
VGG-16, EfficientNet-B3 d t . .
(Abbas et al., 2021) 2021 13,512 strawberry leaf images clentre (compared to EfficientNet-B3 achieved 98.49% accuracy
AlexNet, SqueezeNet)
Transfer Learning + Combination
(Rehman, 2021) 2021 Enhanced citrus image dataset Stretching + Feature Unification + Whale 95.7% accuracy
Optimization Algorithm
(Hidayah et al, 2022) | 2022 16,580 solanaceous crop images YOLOVS 94.29% mAP (outperformed Scaled-YOLOV4)
idayah et al,, . V! .2% mAP (outperformed Scaled- V:
4 (PlantVillage + field-collected) ’ P
14,181 fruit leaf i lor,
(Gaikwad et al., 2022) 2022 ruit leaf images (color AlexNet, SqueezeNet AlexNet: 86.8%, SqueezeNet: 86.6% accuracy
grayscale, B&W)
98.97% identified six di t
(Zainab et al., 2023) 2023 Real-field citrus canker dataset DenseNet-121 0 accuracy (_1 'en e sn.x' 1sease stages
+ prediction capability)
Kazi and Kutubuddin, 85.86% disease detection & qualit
(Kazi and Kutubuddin 2023 Real-time pomegranate dataset CNN + SVM 6 accuracy ( 1sea.se etection S quatty
2023) grading)
. DenseNet201 + RSNN + Spotted Hyena 98.60% accuracy (new benchmark for
(Eman et al., 2024) 2024 ToT-integrated dataset . . .
Optimizer sustainable agriculture)

Conv2D, MaxPooling2D, and GlobalAveragePooling2D layers. The
extracted features from multiple temporal frames are subsequently
fed into Long Short-Term Memory (LSTM) units to model
sequential dependencies. An attention mechanism is then applied
to the LSTM outputs to calculate attention scores and derive
corresponding attention weights for each time step. These
attention outputs are summed with weights to form a context
vector, which is further regularised using dropout and then fed
through dense layers for classification. The proposed methodology
facilitates a performance comparison with the baseline Custom
CNN and CNN+LSTM models, while the CNNAttLSTM
framework aims to improve feature representation and enhance
classification accuracy for jackfruit leaf disease detection.

The novelty of our work lies in three key innovations tailored
specifically for plant disease detection and absent from prior
studies: a pseudo-temporal patch-sequence modelling approach
that converts each static leaf image into ordered 56x56 spatial
patches, enabling the LSTM to learn inter-regional dependencies—
an image representation method not used in existing jackfruit or
plant pathology research; a lightweight hybrid design that fuses
CNN-based spatial extraction, LSTM temporal modelling, and a
temporal attention mechanism within a single architecture
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optimized for noisy, fine-grained agricultural data; and a highly
efficient implementation that achieves 99% accuracy with only 3.7M
parameters, outperforming heavier existing hybrid models while
enabling real-time, edge-compatible deployment. These combined
contributions distinguish the proposed CNNAttLSTM from
previously published hybrid methods.

3.1 Dataset description

The jackfruit leaf disease dataset (Kaggle), made available on
Kaggle, comprises 38,019 images categorized into three classes:
Algal Leaf Spot of Jackfruit, Black Spot of Jackfruit, and Healthy
Leaf of Jackfruit. As illustrated in Figure 2, the dataset was divided
into training, validation, and testing subsets. The training subset
included 6,221 images of Algal Leaf Spot, 4,781 images of Black
Spot, and 2,209 images of healthy leaves. The validation set
consisted of 5,547 Algal Leaf Spot images, 4,653 Black Spot
images, and 2,209 healthy ones. Finally, the test set included
5,547 Algal Leaf Spot images, 4,653 Black Spot images, and 2,209
healthy ones. All images are in JPEG format and were collected
from various jackfruit-growing areas in Bangladesh. This results in
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FIGURE 1

Proposed methodology for jackfruit leaf disease classification.

a core dataset comprising 13,211 high-resolution images
that capture local variations of leaf diseases and healthy
conditions. The dataset obtained from Kaggle was pre-divided
into three subsets training, validation, and testing, and had
undergone comprehensive augmentation and preprocessing by its
creator to maintain class balance and diversity under varying

Frontiers in Plant Science

acquisition conditions. For the purposes of this study, the original
split configuration was retained to ensure consistency and
reproducibility. Approximately one-third of the data was allocated
to each subset (33% training, 33% validation, and 33% testing). The
distribution of images across the three classes is presented in
Table 2, consisting of 17,305 Algal Leaf Spot images, 14,087 Black
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Healthy_Leaf_of_Jackfruit |

FIGURE 2
Dataset class samples.

Spot images, and 6,627 Healthy Leaf images, amounting to a total of
38,019 samples.

3.2 Data preprocessing

To maintain consistency and ensure compatibility with the
employed models, the input dataset was subjected to a
standardized preprocessing pipeline, as illustrated in Figure 3.
Initially, all jackfruit leaf images were resized to a uniform spatial
resolution of 224 x 224 pixels, ensuring consistent input dimensions
across the entire network. Subsequently, this is followed by a
normalisation step that scales pixel intensity values in the range
of [0, 1] to facilitate stable gradient propagation and faster network
convergence. An LSTM-based temporal feature modelling required
a sequence of patches to be generated from each rescaled image by
dividing the latter into a fixed number of ordered sub-regions. This
patch sequence preserved the spatial continuity of leaf texture and
disease patterns, while also allowing LSTM layers to capture
contextual dependencies across different regions of the same leaf.
Thus prepared, the pre-processed dataset provided a uniform
input for all experimental models, ensuring their fair and
consistent evaluation.

For consistency, efficiency, and reproducibility in all
experiments, the preprocessing step was performed using a
standardised Python-based pipeline. Each image was loaded first,
followed by resizing it to a fixed dimension of 224 x 224 x 3 using
TensorFlow utilities, ensuring uniform spatial input. Consequently,
the pixel intensities were normalised in the range [0, 1], which helps

TABLE 2 Distribution of jackfruit leaf images across training, testing,
and validation sets for each class in the dataset.

Total no. of
Name of - . e : .
T Training Testing Validation images in
each class
Algal Leaf
6,221 5,547 5,547 17,305
Spot
Black Spot 4,781 4,653 4,653 14,087
Healthy
2,209 2,209 2,209 6,627
Leaf
Total 13,201 12,409 12,409 38,019
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enhance gradient stability during model training. For sequential
feature modelling in the LSTM part, each resized image was divided
into ordered 56 x 56 patches, considering these pseudo-temporal
sequences for capturing contextual dependencies over spatial
regions. Finally, the processed images with their labels are
arranged in arrays, which are further divided into training,
validation, and test subsets, exploiting stratified partitioning to
maintain class balance. This preprocessing workflow, illustrated in
Table 3, is realised through Python scripts, thereby guaranteeing the
cleanliness and standardisation of the input pipeline, which will be
helpful in the accurate and reproducible performance evaluation of
the proposed CNNAttLSTM model.

3.3 Custom convolutional neural network

A custom CNN is developed for jackfruit leaf disease
classification, as shown in Figure 4, employing sequential
convolution, pooling, and global average pooling layers to extract
discriminative features. Fully connected layers with dropout
enhance generalisation, while a softmax classifier outputs disease
probabilities, enabling accurate identification of multiple jackfruit
leaf disease categories.

The classification framework employs a custom CNN as the
primary feature extractor. The input image tensor X & R*?#22453 jg
first processed through a convolutional layer with 16 filters, each of
size 3x3, stride 1, and “same” padding. The convolutional operation
is defined as Equation 1:

F = o(x«w +b) (1)

where W,i” denotes the k-th convolution kernel, b,(cl) the bias
term, * the convolution operator, and o(-) the ReLU activation
function ©(z) = max(0,z). This is followed by a max pooling
operation of size 2x2 to reduce spatial resolution, Equation 2:

PY = max anl))n,c (2)

W ™ (e,

where €;; defines the pooling region.

A second convolutional block applies 32 filters of size 3x3 with
identical activation and padding configurations, producing
Equation 3:

P = o(POw® +b?) 3)
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Vormatzse (5,31

FIGURE 3
Data preprocessing pipeline for jackfruit leaf disease classification.

This is again followed by a 2x2 max pooling layer as defined in
(2). A Global Average Pooling (GAP) layer then aggregates spatial
features into a channel-wise descriptor, Equation 4:

H W 52
i=12j=1F ij.c 4)

where H and W denote the spatial height and width of the
feature maps.
The pooled feature vector g € R*” is passed through a fully

&=H

connected layer with 64 units and ReLU activation Equation 5:

h =0( (3)g+b(3>) (5)

Dropout regularization with a rate p=0.5 is applied to h, yielding
h'. The final dense layer projects h' into C logits, where C is the
number of jackfruit leaf disease classes, Equation 6:

z=WYH +p® (6)

The class probabilities are obtained via the softmax function
Equation 7:

~_ exp(z)

Ji= ch:l xp (2) (7)

TABLE 3 Preprocessing scripts and their functional descriptions.

Step Preprocessing
no. operation

I Loadi d
fmage Loacing an load_img, img_to_array img =

Resizi
esizing 224)) img -

Python script/code snippet

python from tensorflow.keras.preprocessing.image import
load_img(path, target_size=(224,
img_to_array(img)

3.4 Custom CNN model with LSTM

As illustrated in Figure 5, a tailored CNN combined with a long
short-term memory (LSTM) unit was utilised to perform sequence-
oriented classification of jackfruit leaf diseases. The architecture
operates on sequences of image frames, where spatial features are
first extracted per frame and subsequently modelled for temporal
dependencies, enabling classification based on sequential
visual patterns.

The model processes each frame of the input sequence using the
same CNN. The input shape is BxTx224x224x3, representing the
batch size B, sequence length T, spatial resolution 224x224, and three
RGB channels. The first convolutional layer applies 16 filters, extracting
low-level patterns from each frame. This is expressed in Equation 8:

g = o(Whx, +b0) ®

Here, g is the resulting feature map for frame t, X, is the input
frame, W and b are the convolution weights and biases, *
denotes convolution, and o(-) is the ReLU activation function.
After max pooling reduces spatial dimensions, a second
convolutional layer with 32 filters processes the pooled features.

This is given by Equation 9:

Purpose

Loads each image and resizes it to a uniform spatial dimension of
224%224x3 to ensure input consistency across the model.

2 Pixel Normalization python img = img/255.0

Scales pixel intensity values to the range [0, 1], improving gradient
stability and convergence during training.

Patch Sequence

python import numpy as np def create_patches(image,
patch_size=56): patches = [] for i in range(0, 224, patch_size):

Divides each image into ordered 56x56 sub-regions (patches),

Test Split

test_size=0.55, stratify=y) X_val, X_test, y_val, y_test =
train_test_split(X_temp, y_temp, test_size=0.45, stratify=y_temp)

3 hich tially treated do-t 1 inputs fc
Generation for j in range(0, 224, patch_size): patch = image[i:i+patch_size, j: which are sequentially treated as pseu ,0 emporal inputs for
. ; LSTM feature modeling.
j+patch_size],: patches.append(patch) return np.array(patches)
hon i X,y =[], [] for cls in classes: for file i
. py}t o.n 1mp9rt osXy=[0 .or csine asse.s . or e 1 Organizes preprocessed images and corresponding labels into
4 Dataset Structuring os listdir(cls): img = preprocess_image(os.path.join(cls, file)) k
. structured arrays for model input.
X.append(img) y.append(label_map][cls])
python from sklearn.model_selection import train_test_split
5 Train-Validation— X_train, X_temp, y_train, y_temp = train_test_split(X, y, Creates predefined train, validation, and test sets while

maintaining class balance to ensure fair evaluation.
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FIGURE 4
Custom CNN architecture for the jackfruit leaf disease classification system.

gt(z) g (W(Z)*P (gt(l)) + b(z)) ) The forget gate regulates the proportion of information from
the prior cell state that is preserved, as expressed in Equation 10:
Here, P(-) is the max pooling operation applied to gt(l). Following
another pooling step, Global Average Pooling (GAP) compresses the Ji= G(Wf 8+ Urhiy + by ) (10)
output into a compact feature vector g, for each frame. The input gate controls the extent to which new candidate

The sequence of frame feature vectors {g;}. | is passed into a  information is incorporated into the cell state, as represented in
Long Short-Term Memory (LSTM) network to capture temporal ~ Equation 11:
dependencies. The LSTM updates its internal states at each time

step as shown in the equations below: ir = 6(Wig: + Uihyy + by) (11)

[ Same CNN applied to each of the T frames |

Batch of sequences: R rew | It
[B. T, 224,224, 3] - — 2

16 Filters .
| Dropout|
| Dense|
-< Softmax §< ::

.

.. e
> e
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FIGURE 5
Architecture of the custom CNN-LSTM model for jackfruit leaf disease classification.
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The candidate cell state generates new potential content to be
added to the cell state Equation 12:

¢ =tanh(W.g, + Uh,_, + b,) (12)

The cell state is updated by combining the retained past
information with the new candidate content, weighted by the
respective gates, Equation 13:

¢ =f0c1+i0¢ (13)

The output gate controls the proportion of the cell state that is
revealed to the hidden state, as described in Equation 14:

0y = G(Wogt + Uoht—l + bo) (14)

The hidden state is updated by modulating the activated cell
state through the output gate Equation 15:

h, = 0, ® tanh(c;) (15)

In this formulation, f;, i, and o, are the forget, input, and output
gates, ¢, is the cell state, and A, is the hidden state output at time .

The final hidden state iy from the LSTM represents the entire
input sequence and is passed to a Dense layer for classification. This
step is shown in Equation 16:

zZ= Wth + bd (16)

Here, z is the logit vector of length C (number of classes), W, is
the weight matrix, and b, is the bias vector.

A dropout layer with a rate of 0.5 is employed prior to this layer to
mitigate overfitting. Subsequently, the logits are transformed into
probabilities through the softmax function, as outlined in Equation 17:

exp(z.)

C=—r

chzl €xp (Zj) ’

The training process utilizes categorical cross-entropy loss,

c=1,..,C 17)

which quantifies the divergence between the predicted probability
distribution and the actual labels, as specified in Equation 18:

L=-3Clog() 18)

Here, y, is the true label (one if the correct class, zero otherwise)
and y* is the predicted probability for class c.

3.5 Proposed CNNAttLSTM model (CNN
with attention LSTM model)

The CNNAttLSTM architecture combines convolutional neural
networks, long short-term memory components, and an attention
mechanism to perform multi-class image classification. As
illustrated in Figure 6, spatial features are extracted using a
CNN, temporal dependencies are modelled with an LSTM,
and attention weighting refines feature importance before
classification, thereby enhancing the efficiency of temporal-spatial
representation learning.
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The backbone network processes each frame in the temporal
sequence independently using a shared CNN. The input is a batch
of sequences with dimensions [B, T, 224, 224, 3], where B denotes
the batch size, T the number of frames, and 224x224x3 the spatial
and channel dimensions. The CNN consists of two sequential
convolutional layers: the first employs 16 filters of size 3x3
followed by a ReLU activation and max pooling; the second
employs 32 filters of size 3x3 followed by ReLU activation, max
pooling, and global average pooling. This process transforms each
frame x, into a compact spatial feature representation g;.

Mathematically, for a given frame x, Equation 19:

¢ = GAP(o(MP, (o( Conv, (MP, (o(Conv, (x,))))))) ) (19)

where Conv, and Conv, are convolution operations with 16 and
32 filters, o(-) denotes the ReLU activation, MP; and MP,
denote max pooling layers, and GAP is the global average
pooling operation.

The extracted frame-level features {g;, g2, ..., gr} are fed
sequentially into a Long Short-Term Memory (LSTM) network to
capture temporal dependencies. Each LSTM unit generates a hidden
state, ht, representing the temporal context up to frame t.

The LSTM cell processes each input frame’s feature vector g,
along with the previous hidden state k,_; to update its internal gates
and states, enabling the network to capture temporal dependencies
across the sequence. The computations proceed as follows:

The input gate regulates the amount of new information from
the present input that is incorporated into the cell state, as indicated
in Equation 20:

it = G(Wigt + Uihtfl + bl) (20)

The forget gate regulates the fraction of the preceding cell state
that is preserved, as presented in Equation 21:

fi = (Wyg + Ush,_y + by) (21)

The output gate decides how much of the updated cell state will
influence the hidden state output Equation 22:

0y = G(Wogt + Uoht—l + bo) (22)

The candidate cell state computes the potential new content to
be integrated into the cell state Equation 23:

¢ = tanh(W_g; + U.h,_; +b,) (23)

The cell state is updated by combining retained past memory
and the gated candidate content Equation 24:

G=,0c,+i0¢ (24)

The hidden state is produced by applying the output gate to the
activated cell state, as specified in Equation 25:

h, = 0, © tanh(c,) (25)

where i, f,, and o, are the input, forget, and output gates respectively,
¢, is the cell state, 6(-) denotes the sigmoid activation, © is element-wise
multiplication, and W, Us, b« are learnable parameters.
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FIGURE 6
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Proposed CNNAttLSTM architecture integrating spatial, temporal, and attention mechanisms.

The attention mechanism is applied to improve temporal
interpretability by assigning varying levels of importance to each hidden
state h, in the sequence. The process involves the following computations:

The attention score e, is calculated by projecting the hidden
state h, through a learnable weight matrix W, adding a bias term b,,,
applying a hyperbolic tangent activation, and then taking the dot
product with a learnable vector v, Equation 26:

e, = vy tanh(W,h, + b,) (26)

The normalized attention weight o, is obtained by applying the
softmax function to the attention scores, ensuring that the weights
sum to 1 across all time steps Equation 27:

exp(e;)

= P& 27)
2[:1 exp(ex)

O
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where W, and v, are learnable parameters and b, is the
bias term.

The context vector ccc is then computed as the weighted sum of
hidden states Equation 28:

c= ZtT:l(xtht

The context vector ¢ undergoes dropout regularization with a

(28)

rate of 0.5 to prevent overfitting. The output is then passed
through a fully connected dense layer with softmax activation to
generate the probability distribution y over C classes Equation

29:
3 = Softmax(W,c + b,) (29)

where W, and b, are the learnable weight matrix and bias vector
of the dense layer.
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The network is optimized using the categorical cross-entropy
loss, defined as Equation 30:

L=-37ylog (?,) (30)

where y; is the ground truth one-hot label for class j, and y is the
predicted probability for class j.

The model’s classification performance is quantified using
accuracy, computed as Equation 31:

Number of correct predictions

Accuracy = (31)

Total number of samples
This metric provides a straightforward measure of the
proportion of correctly classified samples.

3.6 Experimental design and computational
environment

The dataset used for the experimental evaluation was the Jackfruit
Leaf Diseases dataset, which consists of 38,019 images categorised
into three classes: algal leaf spot, black spot, and healthy leaves. The
suggested model applies the CNNAtLSTM model to multi-class
classification, utilising the multi-class Conv2D, MaxPooling2D, and
GlobalAveragePooling2D layers to extract features, followed by the
Long Short-Term Memory (LSTM) layers to capture time-based
features, as illustrated in Table 4. A mechanism of attention computes
the attention scores and weights at each time step, producing an
attention context vector that is input into additional layers for
classification, undergoing dropout regularisation and Fully
Connected Layers. The approach was compared against baseline
Custom CNN and CNN + LSTM models. Model training was

10.3389/fpls.2025.1720471

performed with a batch size of 32 using the Adam optimiser and a
predefined learning rate for a fixed number of epochs. All
experiments were conducted on the Kaggle computational
platform, running under Windows OS with Python, TensorFlow,
and CUDA-compatible GPU support. Using the platform’s default
high-performance GPU, RAM allocation, and processor resources,
the experiments were performed. Performance was evaluated based
on accuracy, precision, recall, and Fl-score, presenting averages over
runs using a fixed random seed for reproducibility.

4 Experimental results and their
implications

The proposed CNNAttLSTM model is trained with empirically
optimised hyperparameter values to achieve good and efficient
convergence. In this work, the performance of three deep learning
models — Custom CNN, CNN-LSTM, and CNNAttLSTMModel
— was evaluated for the classification of jackfruit leaf disease. All
input images were resized to 224 x 224 x 3, and training was
conducted with a batch size of 32 for 30 epochs, using the Adam
optimiser with a learning rate of 0.001. Thereafter, the categorical
cross-entropy loss function was utilised for multi-class classification
problems, while ReLU activation was applied to all convolutional
layers. Furthermore, the LSTM part comprises 128 hidden units
that facilitate the capture of sequential dependencies, followed by an
attention mechanism for generating the context vector. To avoid
overfitting, a dropout rate of 0.5 was utilised before the final dense
layer. It uses the softmax activation method to predict three classes:
Algal Leaf Spot, Black Spot, and Healthy Leaf. Training was done on
Kaggle using an NVIDIA Tesla T4 GPU with CUDA support. The

TABLE 4 Summary of related work on plant disease detection and classification.

Layer type

Output dimension

Configuration/operation

Input Stage Input Dataset

Batch of image sequences [B, T, 224 x 224 x 3] [B, T, 224, 224, 3]

CNN Feature Extraction (applied to ConvaD (1)
onv.
each of the T frames)

16 filters (3 x 3), stride = 1, padding = ‘same’,

B, T, 224, 224, 16
activation = ReLU [ !

MaxPooling2D (1)

Pool size =2 x 2 [B, T, 112, 112, 16]

32 filters (3 x 3), stride = 1, padding = ‘same’,

Conv2D (2 B, T, 112, 112, 32
onvZD (2) activation = ReLU [ J
MaxPooling2D (2) Pool size =2 x 2 [B, T, 56, 56, 32]
GlobalAveragePooling2D Aggregates spatial features into vector g, per frame [B, T, 32]
Temporal Modeling LSTM Learns sequential dependencies 'among féature vectors (B, T, 128]
{g1, g ..., g}s 128 hidden units
Attention Mechanism Score Computation — Softmax Computes attention weights (o) for each hidden state [B, T, 1]
Weighted f hidden states: ¢ = X oyh, t
Context Vector Generation cightec sum of hudden states: © by (represents [B, 128]
aggregated temporal focus)
Classification Head Dropout Regularization layer, rate = 0.5 [B, 128]
Dense (Softmax) Fully connected output layer (3 neurons for 3 disease (B, 3]

classes)
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metrics used to evaluate this model’s performance include accuracy,
precision, recall, and F1-score.

4.1 Results for custom CNN

Table 5 classification results show that the Custom CNN
achieves satisfactory results with high accuracy, specifically for
Black Spot of Jackfruit (precision = 0.99, recall = 1.00, F1-score =
1.00), resulting in near-perfect detection. Algal Leaf Spot of
Jackfruit is not only well-recalled (0.96), but its less accurate value
(0.78) also indicates spurious positives. The Healthy Leaf of
Jackfruit is a poor model, and when used, its accuracy (0.81) is
high, but its recall (0.32) is low, possibly due to class imbalance or
feature confusion. The average error (0.86) indicates that it is a good
disease classifier, but suggests that it may be improved in
recognising healthy leaves.

The Custom CNN Model demonstrated robust performance in
classifying jackfruit leaf diseases, as shown in Figure 7, as evidenced
by the training metrics and evaluation plots. The accuracy and
precision of training reached a stable point of approximately 86%,
and the values of loss had been steadily decreasing, indicating
successful learning (Figures 7A-D). The confusion matrix
(Figure 7E) showed that the overall accuracy was 86.4%, with Black
Spot of Jackfruit being perfectly recalled (4,650 correct predictions),
while Healthy Leaf presented faulty results (1,512 errors, misclassified
as Algal Leaf Spot). High discriminative power was also confirmed by
the ROC curves (Figure 7F), and the AUC scores were 0.95 (Algal
Leaf Spot), 1.00 (Black Spot) and 0.93 (Healthy Leaf). The gap
between training/validation curves indicates minor overfitting;
however, the model is generalizable to diseased classes.

4.2 Results for CNN with LSTM

Table 6 demonstrates the model’s excellent performance, as
both disease classes achieve a perfect score (1.00), and Black Spot of
Jackfruit achieves a perfect score in both recall and F1-score (1.00).
Algal Leaf Spot of Jackfruit has almost excellent values (Precision:
1.00, Recall: 0.97, F1: 0.98), and Healthy Leaf of Jackfruit has good
performance (Precision: 0.94, Recall: 0.99, FI1: 0.96). The model
achieves a total classification accuracy of 98%, confirming that it is
highly reliable in disease classification. The slight variations in the
Healthy Leaf measures reveal that there are minor false positives;
however, the model remains capable of identifying both diseased
and healthy leaves.

10.3389/fpls.2025.1720471

Figure 8 shows that the CNN-LSTM model delivers strong
results on the task of classifying jackfruit leaf diseases. The training
and validation accuracy (Figure 8A) reach high values, and the
training and validation accuracy converge to a steady value, whereas
the loss (Figure 8B) decreases monotonically, indicating good
learning. Precision (Figure 8C) and recall (Figure 8D) measures
demonstrate a steady increase in values, indicating that the
algorithm is effective in reducing the number of incorrect positive
and negative predictions. The confusion matrix (Figure 8E) shows a
strong classification with minor misclassifications for the Algal Leaf
Spot of jackfruit. The Figure 8F ROC curves have near-perfect AUC
scores (0.98-1.00), thus ensuring excellent discriminative power. All
of this (Figure 8) confirms the model as reliable in diagnosing the
disease, with high generalisation by all measures.

Early validation peak is observed around the first epoch in
Figures 7C, 8C. This behaviour is expected in deep learning models
trained on large, pre-processed image datasets and typically occurs
due to the model initially learning dominant low-level features
(edges, color gradients, disease spot contrast) that generalize well,
resulting in an early spike in validation precision. As training
proceeds, the network begins to learn more complex, class-
specific representations, which can temporarily introduce
fluctuations while the model transitions from simple general
features to more discriminative higher-level patterns. The effect
diminishes in subsequent epochs as both training and validation
curves stabilize, indicating that the model does not overfit early but
instead progressively converges to a more robust feature
representation. This early peak is therefore a normal transient
behavior and not a sign of instability or poor generalization.

4.3 Results for CNNAttLSTM model

Table 7 shows the precision, recall, F1-score, and the accuracy
of three classes: Algal Leaf Spot of Jackfruit, Black Spot of Jackfruit
and Healthy Leaf of Jackfruit. The Black Spot of Jackfruit has near-
perfect precision and recall (1.00), meaning it is successfully
detected. Algal Leaf Spot of Jackfruit also does well (F1-score:
0.99), and the healthy leaf of jackfruit also achieves a little less
precision (0.97). The general precision is 99%, which proves that the
model is highly reliable in classifying the conditions of
jackfruit leaves.

The findings indicate the excellent model performance, high
training accuracy (nearly 95%), and validation accuracy (nearly
90%), which has high generalization (Figure 9A). The convergence
of training loss is smooth (Figure 9B). Comparatively, the precision

TABLE 5 Classification performance measurements of the tailored CNN model on jackfruit leaf ailments.

Precision Accuracy
Algal_Leaf_Spot_of_Jackfruit 0.78 0.96 0.86
Black_Spot_of_Jackfruit 0.99 1.00 1.00 0.86
Healthy_Leaf of_Jackfruit 0.81 0.32 0.45
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Performance metrics (a) Training accuracy, (b) Training loss, (c) Training precision, (d) Training recall, (e) Confusion matrix, (f) ROC curve for CNN
model.

and recall are also consistently high (~0.95) across epochs
(Figures 9C, D) which indicates consistent reliable detection of
classes. The confusion matrix (Figure 9E) confirms that there
are few misclassifications and that most results are true positives
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(e.g., 5538 in Algal Leaf Spot and zero false negatives), with nearly
zero false negatives. The ROC curves (Figure 9F) have an ideal AUC
score (1.00) across all the classes, which reflects the high level of
discriminative power of the model. The combination of these
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TABLE 6 Classification performance indicators of the combined CNN-
LSTM framework for detecting jackfruit leaf disorders.

Classes Precision Recall Fl-score Accuracy
Algal_Leaf_SPOt_of 100 0.97 0.98
_Jackfruit
Black_Spot_of_
X 1.00 1.00 1.00 0.98
Jackfruit
Healthy_Leaf of
K 0.94 0.99 0.96
Jackfruit

metrics justifies the effectiveness of the hybrid CNN-LSTM
architecture in accurately diagnosing leaf disease.

The fluctuations observed in the validation curves of
Figures 9A-D are primarily due to the high variability within the
dataset—such as differences in lighting, leaf orientation,
background complexity, and disease spot appearance—which
causes the validation batches to exhibit differing levels of feature
difficulty across epochs. This results in non-monotonic behaviour,
especially during the early and mid-training stages. However,
despite these oscillations, the model does not underfit: the
validation accuracy consistently remains high (~90%), the
validation loss steadily decreases, and the final precision/recall
values reach near-perfect levels. Additionally, the confusion
matrix and ROC curves indicate excellent class separability,
confirming strong generalization. Thus, the temporary oscillations
do not reflect underfitting but rather natural variance during
convergence on a heterogeneous dataset, and the final metrics
demonstrate that the model successfully learns robust and
discriminative features.

4.4 Computational efficiency analysis

The comparative analysis of model efficiency in Table 8 proves
that the proposed CNNAtLSTM network performs better and
consumes less computation. The original Custom CNN, with 3.8
million parameters, took approximately 85 minutes to train and
achieved an accuracy of 86%, along with an inference speed of 35
milliseconds per image. The CNN-LSTM model used achieved a
higher accuracy of 98 per cent, per cent, but it required a more
complex model (4.5 million parameters), which led to longer
training (70 minutes) and inference (28 ms/image) times.

TABLE 7 Classification report for CNNAttLSTM model.

Classes Precision Recall Fl-score Accuracy
Algal_Leaf_Spot_of
i 1.00 0.99 0.99
_Jackfruit
Bl
ack_Spot_of 1.00 1.00 1.00 0.99
_Jackfruit
Healthy_Leaf_of_
) 0.97 1.00 0.98
Jackfruit
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Conversely, the CNNAttLSTM model proposed has a higher
accuracy of 99% with a lower parameter count (3.7M, 18% lower)
and a shorter training period (45 minutes), along with an inference
time of 22 ms/image. These results demonstrate that not only can
discrimination and accuracy be improved by the inclusion of the
attention mechanism, but also computational efficiency can be
optimised, making CNNAttLSTM suitable for deployment in real-
time optimised devices.

Although some existing approaches (e.g., DenseNet-121
(Zainab et al., 2023) and DenseNet201 (Eman et al., 2024) based
IoT systems) achieve accuracies close to the proposed model, these
models are substantially heavier, deeper, and more computationally
demanding than the proposed CNNAttLSTM. DenseNet-121
contains approximately 8 million parameters, while DenseNet201-
based systems exceed 20 million parameters, making them
unsuitable for real-time or edge-device deployment. In contrast,
proposed CNNAttLSTM uses only 3.7 million parameters,
representing a reduction of over 50-80% compared to these
models while still achieving a higher accuracy of 99%.
Additionally, the inference speed of 22 ms per image is
significantly faster than DenseNet-based architectures, which
typically require >40-60 ms on comparable hardware. Therefore,
despite similar accuracy ranges, the proposed model is
demonstrably lighter, faster, and more resource-efficient, offering
a superior trade-off between accuracy and computational cost and
making it more feasible for on-field agricultural integration.

4.5 K-fold cross-validation analysis

To further test the generalisation capability and robustness of
the proposed CNNAttLSTM architecture, a 5-fold cross-
validation process was employed. Under this method, the
dataset was randomly divided into five equal-sized folds, with
classes balanced through stratified sampling. Each iteration would
be performed with four folds of training, and the remaining fold
would be used for validation. This was done five times, whereby
each fold was used as a validation set. The accuracy, precision,
recall, and Fl-score metrics of performance for each fold were
calculated, and the mean and standard deviation (SD) were
obtained to determine how well the model remained consistent
across splits. The findings summarised in Table 9 show that
CNNAHLSTM performed highly on all folds, with insignificant
differences in performance across them, which confirms its
strength and low chances of overfitting.

4.6 Grad-Cam visualizations for proposed
CNNAttLSTM model

Figure 10 is a Grad-CAM visualisation that shows the CNN
model’s ability to distinguish between the features of three jackfruit
leaf conditions: Algal Leaf Spot, Black Spot, and Healthy Leaf. All
the rows are based on a single class displaying the original image,
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FIGURE 9

CNNAttLSTM model.
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TABLE 8 Computational efficiency comparison of different models.

Parameters (Millions)

Training time (min)

10.3389/fpls.2025.1720471

Inference time (ms/

Accuracy (%)

image)
Custom CNN 3.8 85 35 86
CNN-LSTM 4.5 70 28 98
Proposed CNNAttLSTM 3.7 (-18%) 45 22 99

Bold values indicate the highest performance metric for each class/model.

TABLE 9 Five-fold cross-validation results of the proposed CNNAttLSTM
model.

the Grad-CAM heatmap, and both. The heatmaps denote the
intensity of colour to show the most significant parts of the
model that contribute to the prediction, with red and yellow parts

o w
Fold  Accuracy (%) Precision Recall Fl-score representing the most important, and blue parts representing the
Fold 1 98.94 0.984 0.985 0.984 least important, respectively. In the case of Algal Leaf Spot and
Fold 2 99.1 0.987 0,986 0.986 Black Spot leaves, the model pays particular attention to the

coloured part or the diseased part, which is in itself a
Fold 3 882 0982 0983 0983 confirmation that the model can identify patterns related to
Fold 4 98.76 0.981 0.982 0.981 disease. On the other hand, the activation in the Healthy Leaf
Fold 5 98,72 0,983 0.981 0.982 row is spread more uniformly over the leaf surface, implying that
the model correlates even colouration, which is green, with healthy
Mean 98.87 + 0.24 0.983 0983 & 0.983 & leaves. On the whole, the model is capable of learning to localise the
SD 0.002 0.002 0.002 ) o
symptoms of disease to classify it correctly.
Bold values indicate the highest performance metric for each class/model.
Class Original Image Grad-Cam Heatmap Overlay

Algal_Leaf Spot
_ of _Jackfruit

Black_Spot_
of Jackfruit

Healthy Leaf
of _Jackfruit

FIGURE 10

Grad-CAM images of the proposed CNNAttLSTM model pay attention to areas of the algal leaf spot, black spot, and healthy jackfruit leaves. Red and
yellow colours indicate that the models pay close attention to disease areas, whereas blue ones have less relevance.
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TABLE 10 Ablation results.

Model variant  Accurac F1-score Recall
Y (Healthy) (Healthy)
Custom CNN 86% 0.45 0.32
CNN-LSTM o5 " .
(No Attention) ° : .
Proposed ,
CNNAHLSTM Model 99% 0.98 100

5 Ablation study

To validate the contributions of key components in our
CNNAtLSTM Model, systematically ablate LSTM and attention
mechanisms, comparing performance against baselines in Table 10.
The Custom CNN (86% accuracy) struggles with healthy leaf recall
(0.32), while adding LSTM boosts Fl-scores (0.96) but retains
minor misclassifications. Integrating attention further refines
results (99% accuracy, 1.00 recall for healthy leaves), confirming
its role in feature refinement. Figure 11 demonstrates the relative
performance across different models.

6 State-of-the-art comparison

A detailed comparison of the proposed CNNAttLSTM model
with existing state-of-the-art methods is presented in Table 11. To
comprehensively evaluate the robustness of various deep learning
architectures for disease classification in jackfruit leaves, several
state-of-the-art transformer-based deep models were applied to
38,019 images of the Jackfruit Leaf Disease Dataset. Results
showed that early hybrid models like Hybrid CNN-Vision
Transformer, which combined convolutional feature extraction

10.3389/fpls.2025.1720471

with transformer-based contextual understanding, reported an
accuracy of 81.30%. Then, later architectures such as the PMVT
and SPT-LSA ViT further improved the performance to 87.60%
and 88.57%, respectively, through the introduction of attention
mechanisms together with localized feature representations. In
addition, based on this self-attention technique, the Enhanced
ViT reported an accuracy of 89.50%, while the Efficient Swin
Transformer obtained an accuracy of 80% by employing
hierarchical feature fusion. PLA-ViT marked a significant
milestone in feature analysis with high precision for leaf features,
obtaining an accuracy of 93%. Finally, the CNNAttLSTM integrates
CNNs for spatial feature extraction, LSTM networks for learning
sequential patterns, and attention mechanisms to focus on disease-
relevant image sections and achieves the best performance of 99%
accuracy. This really shows the exceptional capability of this model
in capturing complex spatiotemporal relationships and fine-grained
texture variations present within the jackfruit leaf images,
outperforming state-of-the-art transformer-based models.

This work is unique in three important ways compared to
existing studies. First a pseudo-temporal patch-based modelling
strategy is introduced in which each image is decomposed into
ordered 56x56 patches, allowing the LSTM to learn spatial-
contextual relationships across leaf regions—an approach not
used in previous jackfruit or plant disease classification works.
Second, unlike prior models that rely solely on CNNs, transfer
learning, or Transformer-based architectures, the proposed model
uniquely integrates a lightweight CNN backbone, sequential
modelling through LSTM, and a temporal attention mechanism
within one framework, enabling selective emphasis on disease-
critical patches. Third, while many existing SOTA models are
computationally heavy, CNNAttLSTM achieves higher accuracy
(99%) with only 3.7M parameters and 22 ms inference time, making
it significantly more efficient and suitable for real-time and edge-

1.000
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Accuracy
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0.800

Model Variant

FIGURE 11
Comparative analysis of model performance accuracy.
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TABLE 11 Comparative analysis of state-of-the-art leaf disease classification models.

Performance
metrics (%)

Technique

Convolutional Neural Networks (CNNs) + Vision

(De Silva and Brown, 2023) Hybrid CNN-Vision Transformer Transformers (ViTs) 81.30%
Modified MobileViT Backbone + Convolutional Block
(Li et al., 2023) Plant-based Mobile Vision Transformer (PMVT) Attention Module + Vision Transformer Encoder + 87.60%
Residual Fusion
Vision T fi Shifted Patch Tokenizati SPT
(Lye and Ng, 2023) SPT-LSA ViT (Vision Transformer) ision frans ormer'+ tted Fa C okenization (SPT) 88.57%
+ Locality Self-Attention (LSA)
(Ali et al., 2025) Enhanced Vision Transformer (ViT) Vision Transformer (ViT) + Self-attention mechanisms 89.50%

(Zhang and Liu, 2025) Efficient Swin Transformer

Swin Transformer + Selective Token Generator + 0%
Feature Fusion Aggregator ’

M 1li and Gopi, 2025
(Murugavalli and Gopi ) Transformers)

PLA-ViT (Precision Leaf Analysis with Vision

Vision Transformer (ViT) + multi-head self-attention 93%

Proposed CNNAttLSTM Model

CNN + LSTM + Attention Mechanism 99%

device agricultural deployment. These aspects collectively
distinguish this work from prior research.

7 Conclusion and future work

This study has thoroughly investigated three deep-learning
models for classifying jackfruit leaf disease, demonstrating
continuous performance improvement through sequential
enhancements to the architecture. The first baseline model was a
Custom CNN that achieved an accuracy of 86 per cent but was
unable to classify healthy leaves (recall = 0.32) correctly. The
addition of LSTM layers (CNN-LSTM) resulted in a significant
improvement in accuracy to 98%, which was able to overcome the
detection problem of healthy leaves (recall = 0.99). The
CNNAtLSTM architecture has shown the best results with 99%
accuracy and almost perfect classification in all categories and high
precision (0.97) and F1-scores (0.98). The ablation analysis revealed
that both the LSTM and attention components were relevant to
these gains, with attention making a particularly significant
contribution to the improvement in feature refinement and
reduction of misclassification rates. Empirical evidence supports
the concept that the joint use of CNN-based feature extraction and
sequential modelling, along with attention mechanisms, can
significantly increase the accuracy of plant disease detection.
Future research suggestions consist of increasing the sample size
and including more types of diseases and diverse environmental
conditions to enhance generalisation; developing light-weight
implementations of the model to deploy it in fields in agriculture;
applying explainable AI model to provide interpretable results to
the end-user; developing real-time monitoring platforms by
combining the model with IoT sensors in the field; and modifying
the architecture to other crops and to more critical plant health
measurements. Additional edge computing and on-site testing
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optimisation in real-life agricultural settings would aid in proving
the robustness and reducing the discrepancy between controlled-
environment performance and applicability in the field, particularly
in terms of precision agriculture. A notable limitation of this study
is that the dataset used was entirely collected from jackfruit-growing
regions within Bangladesh. Consequently, the model’s performance
may vary under different environmental conditions, lighting setups,
and disease manifestation patterns that occur in other geographical
locations. Future work will focus on improving the model’s
generalizability by retraining or fine-tuning the CNNAttLSTM
architecture on region-specific datasets and by validating it
against independent data collected from other jackfruit-producing
countries such as India, Thailand, and Malaysia. Incorporating
diverse climatic and ecological conditions will enable the model
to learn broader disease features, thereby enhancing its adaptability
for global agricultural use.

While the proposed CNNAtLSTM model is designed to be
lightweight and suitable for real-time deployment on edge devices,
several challenges must still be addressed, including limited on-
board memory, lower computational throughput, restricted power
budgets, and potential latency variations under field conditions. To
mitigate these issues, the model can be further optimized using
techniques such as quantization (8-bit or mixed precision), weight
pruning, and model distillation to reduce parameter size and
memory footprint without degrading accuracy. Additionally,
deploying the model on hardware-efficient accelerators (e.g.,
NVIDIA Jetson Nano, Google Coral Edge TPU) and using
optimized inference engines such as TensorRT or TFLite can
significantly improve speed and energy efficiency. Offline caching
of feature maps, batching strategies, and adaptive input resizing can
also help overcome bandwidth and resource limitations. Therefore,
although edge deployment presents inherent challenges, these can
be effectively eradicated through targeted optimization strategies,
ensuring the model’s practical usability in real agricultural settings.
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