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Introduction: Jackfruit cultivation is highly affected by leaf diseases that reduce

yield, fruit quality, and farmer income. Early diagnosis remains challenging due to

the limitations of manual inspection and the lack of automated and scalable

disease detection systems. Existing deep-learning approaches often suffer from

limited generalization and high computational cost, restricting real-time

field deployment.

Methods: This study proposes CNNAttLSTM, a hybrid deep-learning architecture

integrating Convolutional Neural Networks (CNN), Long Short-Term Memory

(LSTM) units, and an attention mechanism for multi-class classification of algal

leaf spot, black spot, and healthy jackfruit leaves. Each image is divided into ordered

56×56 spatial patches, treated as pseudo-temporal sequences to enable the LSTM

to capture contextual dependencies across different leaf regions. Spatial features

are extracted via Conv2D, MaxPooling, and GlobalAveragePooling layers; temporal

modeling is performed by LSTM units; and an attention mechanism assigns

adaptive weights to emphasize disease-relevant regions. Experiments were

conducted on a publicly available Kaggle dataset comprising 38,019 images,

using predefined training, validation, and testing splits.

Results: The proposed CNNAttLSTM model achieved 99% classification accuracy,

outperforming the baseline CNN (86%) and CNN–LSTM (98%) models. It required

only 3.7 million parameters, trained in 45 minutes on an NVIDIA Tesla T4 GPU, and

achieved an inference time of 22 milliseconds per image, demonstrating high

computational efficiency. The patch-based pseudo-temporal approach improved

spatial–temporal feature representation, enabling the model to distinguish subtle

differences between visually similar disease classes.

Discussion: Results show that combining spatial feature extraction with temporal

modeling and attention significantly enhances robustness and classification

performance in plant disease detection. The lightweight design enables real-
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time and edge-device deployment, addressing a major limitation of existing

deep-learning techniques. The findings highlight the potential of CNNAttLSTM

for scalable, efficient, and accurate agricultural disease monitoring and broader

precision agriculture applications.
KEYWORDS
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1 Introduction

Jackfruit is highly susceptible to a plethora of diseases due to

widespread planting, which harms the volume and quality of the

fruit and the economic well-being of farming communities. These

challenges in early disease detection, as seen, are attributed to the

lack of automated disease detection technology and the forced use

of manual detection methods that are mostly labour-intensive and

subject to errors. Although some existing research has examined

computer vision and classification algorithms for detecting fruit

diseases, they have limited generalisation capabilities and are not

capable of diagnosing all pathologies of jackfruits. An AI-based

agro-medical system that combines computer vision and machine

learning has high potential for diagnosing plant diseases, but

additional tuning is needed to be applied in the field of precision

agriculture (Habib et al., 2022). Deep learning has revolutionised

the concept of plant health monitoring by addressing the limitations

and inefficiencies of traditional manual inspections. Convolutional

Neural Networks (CNNs) are among the methods that achieve

better results in detecting plant diseases, especially when trained

using transfer learning to attain peak performance accuracy.

Nevertheless, current models are often marred by a

computational drawback that restricts their practicality for real-

time applications. MobileNetV2, a high-performance and

lightweight model, is an ideal alternative, as it enhances accuracy

and scalability to automatically identify diseases in agricultural

settings (Banarase and Shirbahadurkar, 2024). This is essential in

reducing losses in yields and enhancing sustainable agriculture

practices by detecting and managing plant disease conditions at

an early stage. Eye-level inspection is labour-intensive and

inaccurate. Deep Convolutional Neural Networks (DCNNs) are

an effective method for obtaining high-precision image-based

disease diagnosis. The current systems, nevertheless, are

computationally heavy, thus restricting their uptake. Early disease

detection can be achieved using new DCNN designs, which

minimise agricultural losses and make yield production

sustainable (Rajalakshmi et al., 2024). Accurate identification of

banana leaf diseases will be a crucial element in preventing crop

losses and promoting agricultural sustainability. Deep learning

models, particularly CNNs, have enabled the automatic

classification of diseases. Nevertheless, extracting features is
02
challenging due to the presence of noisy images and similar

symptoms. The hybrid and multi-scale feature learning

techniques, along with the hybrid activation function, can

enhance detection robustness and accuracy, thereby advancing

disease detection in the field of agriculture (Deng et al., 2024).

Skip connection CNNs enable further optimisation of disease-

specific feature extraction, thereby increasing the detection rate.

The majority of current models address the problem of

macronutrient deficiency; however, recent advances in the field of

deep learning enable the identification of micronutrient imbalances,

allowing for the application of precision agriculture principles and

effective nutrient management practices (Sunitha et al., 2024).

CNNs have been successfully applied to solve these diseases, as

well as transfer learning, in mango leaves, thereby addressing some

of the key challenges in precision agriculture. Nevertheless, the

computational efficiency and extensive generalisation to different

environmental conditions need further research (Pratap and

Krishna, 2024). By combining DenseNet-121 and VGG19 with

PSO, the classification performance can be quite strong; however,

optimising the hyperparameters in real-time is a challenging task.

Moreover, Heuristic-based optimisation, combined with deep

mutual learning, is a promising and important possibility for

scalable and high-precision agricultural disease detection (Vijay

and Pushpalatha, 2024). Deep learning has been useful in the

diagnosis of plant diseases, and different types of models (CNNs,

YOLO, and Vision Transformers) are highly classified.

Nevertheless, their models require well-annotated training

samples, and they are highly sensitive to the quality of the data

and the representational variety. Dataset augmentation and

enhancing model generalisation to novel environmental

conditions and disease forms should be given high priority in the

future (Mustofa et al., 2024). Jackfruit leaf pathologies pose a serious

risk to crop yields, commercial fruit standards, and economic

returns, especially for India, which is the world’s largest producer

of jackfruits. The existing detection techniques are ineffective,

subjective, and non-scalable. While CNN with FL provides a

promising platform for disease detection without compromising

data privacy, there is a challenge in maintaining consistency in a

global model across heterogeneous datasets and ensuring

robustness in real-world scenarios (Vats et al., 2024). Federated

learning with CNNs provides the facility of decentralising disease
frontiersin.org
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severity classification, maintaining data privacy. Although there has

been advancement regarding it, the model’s validity across various

climatic conditions and accurate estimation of disease severity

remain challenging (Vats, 2024). The following are the

contributions to our research:
Fron
• Development of a CNNAttLSTM architecture integrating

convolutional neural networks, long short-term memory

units, and an attention mechanism to enhance spatial–

temporal feature representation for multi-class jackfruit

leaf disease classification.

• The novelty lies in the synergistic combination of spatial

feature extraction, temporal context modelling, and

selective attention weighting, enabling the network to

emphasize diagnostically relevant temporal states while

suppressing less informative ones.

• This design facilitates superior spatial–temporal feature

representation, resulting in markedly improved

discrimination between disease categories with

overlapping visual symptoms and enhancing overall

classification robustness in multi-class jackfruit leaf

disease detection.
2 Literature review

Recent advancements in computer vision and deep learning

have greatly enhanced the automated detection of plant leaf diseases

across various crops, forming a strong foundation for studies

focused on identifying diseases in jackfruit leaves. Various other

works have investigated different neural network models, transfer

learning methods, and optimisation techniques to identify diseases

of mango, citrus, apple, tomato, and strawberry leaves with higher

accuracy and swiftness. The work in (Gulavnai and Patil, 2019)

utilised 8,853 images from the original mango dataset for disease

identification, applying transfer learning techniques to the ResNet-

50, ResNet-34, and ResNet-18 architectures. The accuracy after

testing was 91.50%, and the results were guaranteed to be

performance-reliable, as multiple partitions of the data were

performed. In (Janarthan et al., 2020), the authors introduced an

innovative deep metric learning approach for the classification of

citrus fruit and leaf diseases, using a dataset comprising 609 images

of citrus fruits and leaves. The new technique incorporates a

Siamese network with K-Means clustering and neural

classification, achieving an accuracy of 95.04% and demonstrating

better speed and efficiency compared to existing deep models.

Scientists in (Pham et al., 2020) propose a more advanced ANN

model for the classification of mango leaf diseases from 450 images.

The model employs a metaheuristic-based feature selection

approach, achieving an accuracy of 89.41%—significantly higher

compared to the three CNN models tested, which achieved

accuracies of 79.92%, 78.64%, and 84.88%, respectively.

For the classification of citrus diseases (Khattak et al., 2021),

proposed a CNN architecture with embedded feature processing
tiers in Plant Science 03
layers for PlantVillage and Citrus datasets. The developed model

attained an accuracy of 94.55%, surpassing the performance of

existing detection methods available at that time. Likewise (Alsayed

et al., 2021), implemented a ResNetV2 architecture, along with

Adam optimisation, for classifying apple foliar diseases on the

benchmark dataset of Plant Pathology 2020. It achieved a peak

classification performance of 94.7% with transfer learning on VGG-

16, InceptionV3, and MobileNetV2. There has been considerable

advancement in deep learning approaches towards plant disease

diagnosis in recent times. A CNN-based model attained an accuracy

of 98.49% in identifying diseases from a dataset of 3,000 tomato leaf

images, surpassing conventional machine learning methods

through the integration of segmentation and preprocessing

procedures (Trivedi et al., 2021). Moreover, in the case of

strawberry leaf scorch detection, 13,512 images were tested,

showing that the VGG-16 and EfficientNet-B3 models outperform

AlexNet and SqueezeNet, with EfficientNet-B3 achieving a

classification accuracy of up to 98.49% (Abbas et al., 2021).

However, transfer learning methods have proven to be the most

promising in identifying citrus diseases. A study achieved 95.7%

accuracy through the use of image enhancement techniques,

including combination stretching and feature merging, along with

the Whale Optimisation Algorithm for feature extraction (Rehman,

2021). For the same purpose, YOLOv5 outperformed Scaled-

YOLOv4 (94.2% mAP) in performance upon testing on 16,580

images of solanaceous plants from PlantVillage and field-collected

data (Hidayah et al., 2022). Comparative studies of CNN

architectures expose key performance traits. Experiments with

14,181 fruit leaf images showed AlexNet (accuracy of 86.8%) was

marginally better than SqueezeNet (accuracy of 86.6%) under

colour, grayscale, and black-and-white image conditions

(Gaikwad et al., 2022).

The DenseNet-121 model attained an accuracy of 98.97% in

identifying six developmental stages of citrus canker disease,

demonstrating strong predictive capability for disease progression

(Zainab et al., 2023). Combining computer vision with machine

learning has been successful, as attested by an 85.86% accurate

hybrid CNN-SVM model for pomegranate disease diagnosis and

quality classification (Kazi and Kutubuddin, 2023). Optimal

performance was achieved with an IoT-based system that

integrated DenseNet201, RSNN, and the Spotted Hyena

Optimiser, yielding 98.60% accuracy and setting a new

benchmark for applications in sustainable agriculture (Eman

et al., 2024). In the following section, the findings of related work

in this domain are summarised and presented in Table 1.
3 Proposed methodology

As illustrated in Figure 1, the proposed methodology for

jackfruit leaf disease classification employs a CNNAttLSTM

architecture developed to perform multi-class classification of

algal leaf spot, black spot, and healthy leaf categories. The process

begins with data preprocessing and input dataset preparation,

followed by feature extraction using a CNN comprising sequential
frontiersin.org
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Conv2D, MaxPooling2D, and GlobalAveragePooling2D layers. The

extracted features from multiple temporal frames are subsequently

fed into Long Short-Term Memory (LSTM) units to model

sequential dependencies. An attention mechanism is then applied

to the LSTM outputs to calculate attention scores and derive

corresponding attention weights for each time step. These

attention outputs are summed with weights to form a context

vector, which is further regularised using dropout and then fed

through dense layers for classification. The proposed methodology

facilitates a performance comparison with the baseline Custom

CNN and CNN+LSTM models, while the CNNAttLSTM

framework aims to improve feature representation and enhance

classification accuracy for jackfruit leaf disease detection.

The novelty of our work lies in three key innovations tailored

specifically for plant disease detection and absent from prior

studies: a pseudo-temporal patch-sequence modelling approach

that converts each static leaf image into ordered 56×56 spatial

patches, enabling the LSTM to learn inter-regional dependencies—

an image representation method not used in existing jackfruit or

plant pathology research; a lightweight hybrid design that fuses

CNN-based spatial extraction, LSTM temporal modelling, and a

temporal attention mechanism within a single architecture
Frontiers in Plant Science 04
optimized for noisy, fine-grained agricultural data; and a highly

efficient implementation that achieves 99% accuracy with only 3.7M

parameters, outperforming heavier existing hybrid models while

enabling real-time, edge-compatible deployment. These combined

contributions distinguish the proposed CNNAttLSTM from

previously published hybrid methods.
3.1 Dataset description

The jackfruit leaf disease dataset (Kaggle), made available on

Kaggle, comprises 38,019 images categorized into three classes:

Algal Leaf Spot of Jackfruit, Black Spot of Jackfruit, and Healthy

Leaf of Jackfruit. As illustrated in Figure 2, the dataset was divided

into training, validation, and testing subsets. The training subset

included 6,221 images of Algal Leaf Spot, 4,781 images of Black

Spot, and 2,209 images of healthy leaves. The validation set

consisted of 5,547 Algal Leaf Spot images, 4,653 Black Spot

images, and 2,209 healthy ones. Finally, the test set included

5,547 Algal Leaf Spot images, 4,653 Black Spot images, and 2,209

healthy ones. All images are in JPEG format and were collected

from various jackfruit-growing areas in Bangladesh. This results in
TABLE 1 Overview of existing studies on plant disease detection and classification.

Ref. Year Dataset used Techniques or methods used Evaluation of parameters

(Gulavnai and Patil,
2019)

2019 8,853 mango leaf images
ResNet50, ResNet34, ResNet18 (Transfer

Learning)
91.50% accuracy

(Janarthan et al., 2020) 2020 609 citrus fruit and leaf images
Siamese Network + K-Means Clustering +

Neural Classifier
95.04% accuracy (higher speed & efficiency

than existing models)

(Pham et al., 2020) 2020 450 mango leaf images ANN + Metaheuristic Feature Selection
89.41% accuracy (outperformed 3 CNN

models: 79.92%, 78.64%, 84.88%)

(Khattak et al., 2021) 2021 Citrus and PlantVillage datasets
CNN with integrated feature processing

layers
94.55% accuracy (better than existing

techniques)

(Alsayed et al., 2021) 2021 Plant Pathology 2020 dataset
ResNetV2 + Adam Optimizer (Transfer

Learning: VGG16, InceptionV3,
MobileNetV2)

94.7% classification accuracy

(Trivedi et al., 2021) 2021 3,000 tomato leaf images CNN with segmentation & preprocessing
98.49% accuracy (outperformed traditional

ML)

(Abbas et al., 2021) 2021 13,512 strawberry leaf images
VGG-16, EfficientNet-B3 (compared to

AlexNet, SqueezeNet)
EfficientNet-B3 achieved 98.49% accuracy

(Rehman, 2021) 2021 Enhanced citrus image dataset
Transfer Learning + Combination

Stretching + Feature Unification + Whale
Optimization Algorithm

95.7% accuracy

(Hidayah et al., 2022) 2022
16,580 solanaceous crop images
(PlantVillage + field-collected)

YOLOv5 94.2% mAP (outperformed Scaled-YOLOv4)

(Gaikwad et al., 2022) 2022
14,181 fruit leaf images (color,

grayscale, B&W)
AlexNet, SqueezeNet AlexNet: 86.8%, SqueezeNet: 86.6% accuracy

(Zainab et al., 2023) 2023 Real-field citrus canker dataset DenseNet-121
98.97% accuracy (identified six disease stages

+ prediction capability)

(Kazi and Kutubuddin,
2023)

2023 Real-time pomegranate dataset CNN + SVM
85.86% accuracy (disease detection & quality

grading)

(Eman et al., 2024) 2024 IoT-integrated dataset
DenseNet201 + RSNN + Spotted Hyena

Optimizer
98.60% accuracy (new benchmark for

sustainable agriculture)
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a core dataset comprising 13,211 high-resolution images

that capture local variations of leaf diseases and healthy

conditions. The dataset obtained from Kaggle was pre-divided

into three subsets training, validation, and testing, and had

undergone comprehensive augmentation and preprocessing by its

creator to maintain class balance and diversity under varying
Frontiers in Plant Science 05
acquisition conditions. For the purposes of this study, the original

split configuration was retained to ensure consistency and

reproducibility. Approximately one-third of the data was allocated

to each subset (33% training, 33% validation, and 33% testing). The

distribution of images across the three classes is presented in

Table 2, consisting of 17,305 Algal Leaf Spot images, 14,087 Black
FIGURE 1

Proposed methodology for jackfruit leaf disease classification.
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Spot images, and 6,627 Healthy Leaf images, amounting to a total of

38,019 samples.
3.2 Data preprocessing

To maintain consistency and ensure compatibility with the

employed models, the input dataset was subjected to a

standardized preprocessing pipeline, as illustrated in Figure 3.

Initially, all jackfruit leaf images were resized to a uniform spatial

resolution of 224 × 224 pixels, ensuring consistent input dimensions

across the entire network. Subsequently, this is followed by a

normalisation step that scales pixel intensity values in the range

of [0, 1] to facilitate stable gradient propagation and faster network

convergence. An LSTM-based temporal feature modelling required

a sequence of patches to be generated from each rescaled image by

dividing the latter into a fixed number of ordered sub-regions. This

patch sequence preserved the spatial continuity of leaf texture and

disease patterns, while also allowing LSTM layers to capture

contextual dependencies across different regions of the same leaf.

Thus prepared, the pre-processed dataset provided a uniform

input for all experimental models, ensuring their fair and

consistent evaluation.

For consistency, efficiency, and reproducibility in all

experiments, the preprocessing step was performed using a

standardised Python-based pipeline. Each image was loaded first,

followed by resizing it to a fixed dimension of 224 × 224 × 3 using

TensorFlow utilities, ensuring uniform spatial input. Consequently,

the pixel intensities were normalised in the range [0, 1], which helps
Frontiers in Plant Science 06
enhance gradient stability during model training. For sequential

feature modelling in the LSTM part, each resized image was divided

into ordered 56 × 56 patches, considering these pseudo-temporal

sequences for capturing contextual dependencies over spatial

regions. Finally, the processed images with their labels are

arranged in arrays, which are further divided into training,

validation, and test subsets, exploiting stratified partitioning to

maintain class balance. This preprocessing workflow, illustrated in

Table 3, is realised through Python scripts, thereby guaranteeing the

cleanliness and standardisation of the input pipeline, which will be

helpful in the accurate and reproducible performance evaluation of

the proposed CNNAttLSTM model.
3.3 Custom convolutional neural network

A custom CNN is developed for jackfruit leaf disease

classification, as shown in Figure 4, employing sequential

convolution, pooling, and global average pooling layers to extract

discriminative features. Fully connected layers with dropout

enhance generalisation, while a softmax classifier outputs disease

probabilities, enabling accurate identification of multiple jackfruit

leaf disease categories.

The classification framework employs a custom CNN as the

primary feature extractor. The input image tensor X ∈ R224x224x3 is

first processed through a convolutional layer with 16 filters, each of

size 3×3, stride 1, and “same” padding. The convolutional operation

is defined as Equation 1:

F(1)
k = s(X*W

(1)
k + b(1)k ) (1)

where W(1)
k denotes the k-th convolution kernel, b(1)k the bias

term, ∗ the convolution operator, and s( · ) the ReLU activation

function s(z) = max (0, z). This is followed by a max pooling

operation of size 2×2 to reduce spatial resolution, Equation 2:

P(1)
i,j,c = max

(m,n)∈Wi,j

F(1)
m,n,c (2)

where Wi,j defines the pooling region.

A second convolutional block applies 32 filters of size 3×3 with

identical activation and padding configurations, producing

Equation 3:

F(2)
k = s P(1)

*W
(2)
k + b(2)k

� �
(3)
TABLE 2 Distribution of jackfruit leaf images across training, testing,
and validation sets for each class in the dataset.

Name of
classes

Training Testing Validation
Total no. of
images in
each class

Algal Leaf
Spot

6,221 5,547 5,547 17,305

Black Spot 4,781 4,653 4,653 14,087

Healthy
Leaf

2,209 2,209 2,209 6,627

Total 13,201 12,409 12,409 38,019
FIGURE 2

Dataset class samples.
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This is again followed by a 2×2 max pooling layer as defined in

(2). A Global Average Pooling (GAP) layer then aggregates spatial

features into a channel-wise descriptor, Equation 4:

gc =
1

H · WoH
i=1oW

j=1F
(2)
i,j,c (4)

where H and W denote the spatial height and width of the

feature maps.

The pooled feature vector g ∈ R32 is passed through a fully

connected layer with 64 units and ReLU activation Equation 5:

h = s W(3)g + b(3)
� �

(5)

Dropout regularization with a rate p=0.5 is applied to h, yielding

h′. The final dense layer projects h′ into C logits, where C is the

number of jackfruit leaf disease classes, Equation 6:

z = W(4)h0 + b(4) (6)

The class probabilities are obtained via the softmax function

Equation 7:

byi = exp (zi)

oC
j=1 exp (zj)

(7)
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3.4 Custom CNN model with LSTM

As illustrated in Figure 5, a tailored CNN combined with a long

short-term memory (LSTM) unit was utilised to perform sequence-

oriented classification of jackfruit leaf diseases. The architecture

operates on sequences of image frames, where spatial features are

first extracted per frame and subsequently modelled for temporal

dependencies, enabling classification based on sequential

visual patterns.

The model processes each frame of the input sequence using the

same CNN. The input shape is B×T×224×224×3, representing the

batch size B, sequence length T, spatial resolution 224×224, and three

RGB channels. The first convolutional layer applies 16 filters, extracting

low-level patterns from each frame. This is expressed in Equation 8:

g(1)t = s W(1)
*Xt + b(1)

� �
(8)

Here, g(1)t is the resulting feature map for frame t, Xt is the input

frame, W(1) and b(1) are the convolution weights and biases, *

denotes convolution, and s(·) is the ReLU activation function.

After max pooling reduces spatial dimensions, a second

convolutional layer with 32 filters processes the pooled features.

This is given by Equation 9:
FIGURE 3

Data preprocessing pipeline for jackfruit leaf disease classification.
TABLE 3 Preprocessing scripts and their functional descriptions.

Step
no.

Preprocessing
operation

Python script/code snippet Purpose

1
Image Loading and

Resizing

python from tensorflow.keras.preprocessing.image import
load_img, img_to_array img = load_img(path, target_size=(224,

224)) img = img_to_array(img)

Loads each image and resizes it to a uniform spatial dimension of
224×224×3 to ensure input consistency across the model.

2 Pixel Normalization python img = img/255.0
Scales pixel intensity values to the range [0, 1], improving gradient

stability and convergence during training.

3
Patch Sequence
Generation

python import numpy as np def create_patches(image,
patch_size=56): patches = [] for i in range(0, 224, patch_size):

for j in range(0, 224, patch_size): patch = image[i:i+patch_size, j:
j+patch_size],: patches.append(patch) return np.array(patches)

Divides each image into ordered 56×56 sub-regions (patches),
which are sequentially treated as pseudo-temporal inputs for

LSTM feature modeling.

4 Dataset Structuring
python import os X, y = [], [] for cls in classes: for file in

os.listdir(cls): img = preprocess_image(os.path.join(cls, file))
X.append(img) y.append(label_map[cls])

Organizes preprocessed images and corresponding labels into
structured arrays for model input.

5
Train–Validation–

Test Split

python from sklearn.model_selection import train_test_split
X_train, X_temp, y_train, y_temp = train_test_split(X, y,
test_size=0.55, stratify=y) X_val, X_test, y_val, y_test =

train_test_split(X_temp, y_temp, test_size=0.45, stratify=y_temp)

Creates predefined train, validation, and test sets while
maintaining class balance to ensure fair evaluation.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1720471
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tuteja et al. 10.3389/fpls.2025.1720471
g 2ð Þ
t = s W 2ð Þ

*P g 1ð Þ
t

� �
+ b 2ð Þ

� �
(9)

Here, P(·) is the max pooling operation applied to g 1ð Þ
t . Following

another pooling step, Global Average Pooling (GAP) compresses the

output into a compact feature vector gt for each frame.

The sequence of frame feature vectors gtf gTt=1 is passed into a

Long Short-Term Memory (LSTM) network to capture temporal

dependencies. The LSTM updates its internal states at each time

step as shown in the equations below:
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The forget gate regulates the proportion of information from

the prior cell state that is preserved, as expressed in Equation 10:

ft = s Wf gt + Uf ht−1 + bf
� �

(10)

The input gate controls the extent to which new candidate

information is incorporated into the cell state, as represented in

Equation 11:

it = s Wigt + Uiht−1 + bið Þ (11)
FIGURE 5

Architecture of the custom CNN–LSTM model for jackfruit leaf disease classification.
FIGURE 4

Custom CNN architecture for the jackfruit leaf disease classification system.
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The candidate cell state generates new potential content to be

added to the cell state Equation 12:

ect = tanh Wcgt + Ucht−1 + bcð Þ (12)

The cell state is updated by combining the retained past

information with the new candidate content, weighted by the

respective gates, Equation 13:

ct = ft ⊙ ct−1 + it ⊙ ect (13)

The output gate controls the proportion of the cell state that is

revealed to the hidden state, as described in Equation 14:

ot = s Wogt + Uoht−1 + boð Þ (14)

The hidden state is updated by modulating the activated cell

state through the output gate Equation 15:

ht = ot ⊙ tanh ctð Þ (15)

In this formulation, ft, it, and ot are the forget, input, and output

gates, ct is the cell state, and ht is the hidden state output at time t.

The final hidden state hT from the LSTM represents the entire

input sequence and is passed to a Dense layer for classification. This

step is shown in Equation 16:

z = WdhT + bd (16)

Here, z is the logit vector of length C (number of classes),Wd is

the weight matrix, and bd is the bias vector.

A dropout layer with a rate of 0.5 is employed prior to this layer to

mitigate overfitting. Subsequently, the logits are transformed into

probabilities through the softmax function, as outlined in Equation 17:

ĉ =
exp zcð Þ

oC
j=1 exp zj

� � , c = 1,…,C (17)

The training process utilizes categorical cross-entropy loss,

which quantifies the divergence between the predicted probability

distribution and the actual labels, as specified in Equation 18:

L = −oC
c=1yc log byc� �

(18)

Here, yc is the true label (one if the correct class, zero otherwise)

and ŷc is the predicted probability for class c.
3.5 Proposed CNNAttLSTM model (CNN
with attention LSTM model)

The CNNAttLSTM architecture combines convolutional neural

networks, long short-term memory components, and an attention

mechanism to perform multi-class image classification. As

illustrated in Figure 6, spatial features are extracted using a

CNN, temporal dependencies are modelled with an LSTM,

and attention weighting refines feature importance before

classification, thereby enhancing the efficiency of temporal-spatial

representation learning.
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The backbone network processes each frame in the temporal

sequence independently using a shared CNN. The input is a batch

of sequences with dimensions [B, T, 224, 224, 3], where B denotes

the batch size, T the number of frames, and 224×224×3 the spatial

and channel dimensions. The CNN consists of two sequential

convolutional layers: the first employs 16 filters of size 3×3

followed by a ReLU activation and max pooling; the second

employs 32 filters of size 3×3 followed by ReLU activation, max

pooling, and global average pooling. This process transforms each

frame xt into a compact spatial feature representation gt.

Mathematically, for a given frame xt Equation 19:

gt = GAPðsðMP2ðsðConv2ðMP1ðsðConv1 xtð ÞÞÞÞÞÞÞÞ (19)

where Conv1 and Conv2 are convolution operations with 16 and

32 filters, s(·) denotes the ReLU activation, MP1 and MP2
denote max pooling layers, and GAP is the global average

pooling operation.

The extracted frame-level features {g1, g2, …, gT} are fed

sequentially into a Long Short-Term Memory (LSTM) network to

capture temporal dependencies. Each LSTM unit generates a hidden

state, ht, representing the temporal context up to frame t.

The LSTM cell processes each input frame’s feature vector gt
along with the previous hidden state ht−1 to update its internal gates

and states, enabling the network to capture temporal dependencies

across the sequence. The computations proceed as follows:

The input gate regulates the amount of new information from

the present input that is incorporated into the cell state, as indicated

in Equation 20:

it = s Wigt + Uiht−1 + bið Þ (20)

The forget gate regulates the fraction of the preceding cell state

that is preserved, as presented in Equation 21:

ft = s Wf gt + Uf ht−1 + bf
� �

(21)

The output gate decides how much of the updated cell state will

influence the hidden state output Equation 22:

ot = s Wogt + Uoht−1 + boð Þ   (22)

The candidate cell state computes the potential new content to

be integrated into the cell state Equation 23:

ect = tanh Wcgt + Ucht−1 + bcð Þ (23)

The cell state is updated by combining retained past memory

and the gated candidate content Equation 24:

ct = ft ⊙ ct−1 + it ⊙ ect (24)

The hidden state is produced by applying the output gate to the

activated cell state, as specified in Equation 25:

ht = ot ⊙ tanh ctð Þ (25)

where it, ft, and ot are the input, forget, and output gates respectively,

ct is the cell state, s(·) denotes the sigmoid activation, ⊙ is element-wise

multiplication, and W∗, U∗, b∗ are learnable parameters.
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The attention mechanism is applied to improve temporal

interpretability by assigning varying levels of importance to each hidden

state ht in the sequence. The process involves the following computations:

The attention score et is calculated by projecting the hidden

state ht through a learnable weight matrixWa, adding a bias term ba,

applying a hyperbolic tangent activation, and then taking the dot

product with a learnable vector va Equation 26:

et = v⊤a tanh Waht + bað Þ   (26)

The normalized attention weight at is obtained by applying the

softmax function to the attention scores, ensuring that the weights

sum to 1 across all time steps Equation 27:

at =
exp etð Þ

oT
k=1 exp ekð Þ (27)
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where Wa and va are learnable parameters and ba is the

bias term.

The context vector ccc is then computed as the weighted sum of

hidden states Equation 28:

c =oT
t=1atht (28)

The context vector c undergoes dropout regularization with a

rate of 0.5 to prevent overfitting. The output is then passed

through a fully connected dense layer with softmax activation to

generate the probability distribution ŷ over C classes Equation

29:

ŷ = Softmax Woc + boð Þ (29)

whereWo and bo are the learnable weight matrix and bias vector

of the dense layer.
FIGURE 6

Proposed CNNAttLSTM architecture integrating spatial, temporal, and attention mechanisms.
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The network is optimized using the categorical cross-entropy

loss, defined as Equation 30:

L = −oC
j=1yj log byj

� �
(30)

where yj is the ground truth one-hot label for class j, and ŷj is the

predicted probability for class j.

The model’s classification performance is quantified using

accuracy, computed as Equation 31:

Accuracy =
Number of correct predictions

Total number of samples
(31)

This metric provides a straightforward measure of the

proportion of correctly classified samples.
3.6 Experimental design and computational
environment

The dataset used for the experimental evaluation was the Jackfruit

Leaf Diseases dataset, which consists of 38,019 images categorised

into three classes: algal leaf spot, black spot, and healthy leaves. The

suggested model applies the CNNAttLSTM model to multi-class

classification, utilising the multi-class Conv2D, MaxPooling2D, and

GlobalAveragePooling2D layers to extract features, followed by the

Long Short-Term Memory (LSTM) layers to capture time-based

features, as illustrated in Table 4. Amechanism of attention computes

the attention scores and weights at each time step, producing an

attention context vector that is input into additional layers for

classification, undergoing dropout regularisation and Fully

Connected Layers. The approach was compared against baseline

Custom CNN and CNN + LSTM models. Model training was
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performed with a batch size of 32 using the Adam optimiser and a

predefined learning rate for a fixed number of epochs. All

experiments were conducted on the Kaggle computational

platform, running under Windows OS with Python, TensorFlow,

and CUDA-compatible GPU support. Using the platform’s default

high-performance GPU, RAM allocation, and processor resources,

the experiments were performed. Performance was evaluated based

on accuracy, precision, recall, and F1-score, presenting averages over

runs using a fixed random seed for reproducibility.
4 Experimental results and their
implications

The proposed CNNAttLSTM model is trained with empirically

optimised hyperparameter values to achieve good and efficient

convergence. In this work, the performance of three deep learning

models — Custom CNN, CNN-LSTM, and CNNAttLSTMModel

— was evaluated for the classification of jackfruit leaf disease. All

input images were resized to 224 × 224 × 3, and training was

conducted with a batch size of 32 for 30 epochs, using the Adam

optimiser with a learning rate of 0.001. Thereafter, the categorical

cross-entropy loss function was utilised for multi-class classification

problems, while ReLU activation was applied to all convolutional

layers. Furthermore, the LSTM part comprises 128 hidden units

that facilitate the capture of sequential dependencies, followed by an

attention mechanism for generating the context vector. To avoid

overfitting, a dropout rate of 0.5 was utilised before the final dense

layer. It uses the softmax activation method to predict three classes:

Algal Leaf Spot, Black Spot, and Healthy Leaf. Training was done on

Kaggle using an NVIDIA Tesla T4 GPU with CUDA support. The
TABLE 4 Summary of related work on plant disease detection and classification.

Stage Layer type Configuration/operation Output dimension

Input Stage Input Dataset Batch of image sequences [B, T, 224 × 224 × 3] [B, T, 224, 224, 3]

CNN Feature Extraction (applied to
each of the T frames)

Conv2D (1)
16 filters (3 × 3), stride = 1, padding = ‘same’,

activation = ReLU
[B, T, 224, 224, 16]

MaxPooling2D (1) Pool size = 2 × 2 [B, T, 112, 112, 16]

Conv2D (2)
32 filters (3 × 3), stride = 1, padding = ‘same’,

activation = ReLU
[B, T, 112, 112, 32]

MaxPooling2D (2) Pool size = 2 × 2 [B, T, 56, 56, 32]

GlobalAveragePooling2D Aggregates spatial features into vector gt per frame [B, T, 32]

Temporal Modeling LSTM
Learns sequential dependencies among feature vectors

{g1, g2, …, gt}; 128 hidden units
[B, T, 128]

Attention Mechanism Score Computation → Softmax Computes attention weights (at) for each hidden state [B, T, 1]

Context Vector Generation
Weighted sum of hidden states: c = S atht (represents

aggregated temporal focus)
[B, 128]

Classification Head Dropout Regularization layer, rate = 0.5 [B, 128]

Dense (Softmax)
Fully connected output layer (3 neurons for 3 disease

classes)
[B, 3]
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metrics used to evaluate this model’s performance include accuracy,

precision, recall, and F1-score.
4.1 Results for custom CNN

Table 5 classification results show that the Custom CNN

achieves satisfactory results with high accuracy, specifically for

Black Spot of Jackfruit (precision = 0.99, recall = 1.00, F1-score =

1.00), resulting in near-perfect detection. Algal Leaf Spot of

Jackfruit is not only well-recalled (0.96), but its less accurate value

(0.78) also indicates spurious positives. The Healthy Leaf of

Jackfruit is a poor model, and when used, its accuracy (0.81) is

high, but its recall (0.32) is low, possibly due to class imbalance or

feature confusion. The average error (0.86) indicates that it is a good

disease classifier, but suggests that it may be improved in

recognising healthy leaves.

The Custom CNN Model demonstrated robust performance in

classifying jackfruit leaf diseases, as shown in Figure 7, as evidenced

by the training metrics and evaluation plots. The accuracy and

precision of training reached a stable point of approximately 86%,

and the values of loss had been steadily decreasing, indicating

successful learning (Figures 7A–D). The confusion matrix

(Figure 7E) showed that the overall accuracy was 86.4%, with Black

Spot of Jackfruit being perfectly recalled (4,650 correct predictions),

while Healthy Leaf presented faulty results (1,512 errors, misclassified

as Algal Leaf Spot). High discriminative power was also confirmed by

the ROC curves (Figure 7F), and the AUC scores were 0.95 (Algal

Leaf Spot), 1.00 (Black Spot) and 0.93 (Healthy Leaf). The gap

between training/validation curves indicates minor overfitting;

however, the model is generalizable to diseased classes.
4.2 Results for CNN with LSTM

Table 6 demonstrates the model’s excellent performance, as

both disease classes achieve a perfect score (1.00), and Black Spot of

Jackfruit achieves a perfect score in both recall and F1-score (1.00).

Algal Leaf Spot of Jackfruit has almost excellent values (Precision:

1.00, Recall: 0.97, F1: 0.98), and Healthy Leaf of Jackfruit has good

performance (Precision: 0.94, Recall: 0.99, F1: 0.96). The model

achieves a total classification accuracy of 98%, confirming that it is

highly reliable in disease classification. The slight variations in the

Healthy Leaf measures reveal that there are minor false positives;

however, the model remains capable of identifying both diseased

and healthy leaves.
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Figure 8 shows that the CNN-LSTM model delivers strong

results on the task of classifying jackfruit leaf diseases. The training

and validation accuracy (Figure 8A) reach high values, and the

training and validation accuracy converge to a steady value, whereas

the loss (Figure 8B) decreases monotonically, indicating good

learning. Precision (Figure 8C) and recall (Figure 8D) measures

demonstrate a steady increase in values, indicating that the

algorithm is effective in reducing the number of incorrect positive

and negative predictions. The confusion matrix (Figure 8E) shows a

strong classification with minor misclassifications for the Algal Leaf

Spot of jackfruit. The Figure 8F ROC curves have near-perfect AUC

scores (0.98-1.00), thus ensuring excellent discriminative power. All

of this (Figure 8) confirms the model as reliable in diagnosing the

disease, with high generalisation by all measures.

Early validation peak is observed around the first epoch in

Figures 7C, 8C. This behaviour is expected in deep learning models

trained on large, pre-processed image datasets and typically occurs

due to the model initially learning dominant low-level features

(edges, color gradients, disease spot contrast) that generalize well,

resulting in an early spike in validation precision. As training

proceeds, the network begins to learn more complex, class-

specific representations, which can temporarily introduce

fluctuations while the model transitions from simple general

features to more discriminative higher-level patterns. The effect

diminishes in subsequent epochs as both training and validation

curves stabilize, indicating that the model does not overfit early but

instead progressively converges to a more robust feature

representation. This early peak is therefore a normal transient

behavior and not a sign of instability or poor generalization.
4.3 Results for CNNAttLSTM model

Table 7 shows the precision, recall, F1-score, and the accuracy

of three classes: Algal Leaf Spot of Jackfruit, Black Spot of Jackfruit

and Healthy Leaf of Jackfruit. The Black Spot of Jackfruit has near-

perfect precision and recall (1.00), meaning it is successfully

detected. Algal Leaf Spot of Jackfruit also does well (F1-score:

0.99), and the healthy leaf of jackfruit also achieves a little less

precision (0.97). The general precision is 99%, which proves that the

model is highly reliable in classifying the conditions of

jackfruit leaves.

The findings indicate the excellent model performance, high

training accuracy (nearly 95%), and validation accuracy (nearly

90%), which has high generalization (Figure 9A). The convergence

of training loss is smooth (Figure 9B). Comparatively, the precision
TABLE 5 Classification performance measurements of the tailored CNN model on jackfruit leaf ailments.

Classes Precision Recall F1-score Accuracy

Algal_Leaf_Spot_of_Jackfruit 0.78 0.96 0.86

0.86Black_Spot_of_Jackfruit 0.99 1.00 1.00

Healthy_Leaf_of_Jackfruit 0.81 0.32 0.45
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and recall are also consistently high (~0.95) across epochs

(Figures 9C, D) which indicates consistent reliable detection of

classes. The confusion matrix (Figure 9E) confirms that there

are few misclassifications and that most results are true positives
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(e.g., 5538 in Algal Leaf Spot and zero false negatives), with nearly

zero false negatives. The ROC curves (Figure 9F) have an ideal AUC

score (1.00) across all the classes, which reflects the high level of

discriminative power of the model. The combination of these
FIGURE 7

Performance metrics (a) Training accuracy, (b) Training loss, (c) Training precision, (d) Training recall, (e) Confusion matrix, (f) ROC curve for CNN
model.
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metrics justifies the effectiveness of the hybrid CNN-LSTM

architecture in accurately diagnosing leaf disease.

The fluctuations observed in the validation curves of

Figures 9A–D are primarily due to the high variability within the

dataset—such as differences in lighting, leaf orientation,

background complexity, and disease spot appearance—which

causes the validation batches to exhibit differing levels of feature

difficulty across epochs. This results in non-monotonic behaviour,

especially during the early and mid-training stages. However,

despite these oscillations, the model does not underfit: the

validation accuracy consistently remains high (~90%), the

validation loss steadily decreases, and the final precision/recall

values reach near-perfect levels. Additionally, the confusion

matrix and ROC curves indicate excellent class separability,

confirming strong generalization. Thus, the temporary oscillations

do not reflect underfitting but rather natural variance during

convergence on a heterogeneous dataset, and the final metrics

demonstrate that the model successfully learns robust and

discriminative features.
4.4 Computational efficiency analysis

The comparative analysis of model efficiency in Table 8 proves

that the proposed CNNAttLSTM network performs better and

consumes less computation. The original Custom CNN, with 3.8

million parameters, took approximately 85 minutes to train and

achieved an accuracy of 86%, along with an inference speed of 35

milliseconds per image. The CNN-LSTM model used achieved a

higher accuracy of 98 per cent, per cent, but it required a more

complex model (4.5 million parameters), which led to longer

training (70 minutes) and inference (28 ms/image) times.
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Conversely, the CNNAttLSTM model proposed has a higher

accuracy of 99% with a lower parameter count (3.7M, 18% lower)

and a shorter training period (45 minutes), along with an inference

time of 22 ms/image. These results demonstrate that not only can

discrimination and accuracy be improved by the inclusion of the

attention mechanism, but also computational efficiency can be

optimised, making CNNAttLSTM suitable for deployment in real-

time optimised devices.

Although some existing approaches (e.g., DenseNet-121

(Zainab et al., 2023) and DenseNet201 (Eman et al., 2024) based

IoT systems) achieve accuracies close to the proposed model, these

models are substantially heavier, deeper, and more computationally

demanding than the proposed CNNAttLSTM. DenseNet-121

contains approximately 8 million parameters, while DenseNet201-

based systems exceed 20 million parameters, making them

unsuitable for real-time or edge-device deployment. In contrast,

proposed CNNAttLSTM uses only 3.7 million parameters,

representing a reduction of over 50–80% compared to these

models while still achieving a higher accuracy of 99%.

Additionally, the inference speed of 22 ms per image is

significantly faster than DenseNet-based architectures, which

typically require >40–60 ms on comparable hardware. Therefore,

despite similar accuracy ranges, the proposed model is

demonstrably lighter, faster, and more resource-efficient, offering

a superior trade-off between accuracy and computational cost and

making it more feasible for on-field agricultural integration.
4.5 K-fold cross-validation analysis

To further test the generalisation capability and robustness of

the proposed CNNAttLSTM architecture, a 5-fold cross-

validation process was employed. Under this method, the

dataset was randomly divided into five equal-sized folds, with

classes balanced through stratified sampling. Each iteration would

be performed with four folds of training, and the remaining fold

would be used for validation. This was done five times, whereby

each fold was used as a validation set. The accuracy, precision,

recall, and F1-score metrics of performance for each fold were

calculated, and the mean and standard deviation (SD) were

obtained to determine how well the model remained consistent

across splits. The findings summarised in Table 9 show that

CNNAttLSTM performed highly on all folds, with insignificant

differences in performance across them, which confirms its

strength and low chances of overfitting.
4.6 Grad-Cam visualizations for proposed
CNNAttLSTM model

Figure 10 is a Grad-CAM visualisation that shows the CNN

model’s ability to distinguish between the features of three jackfruit

leaf conditions: Algal Leaf Spot, Black Spot, and Healthy Leaf. All

the rows are based on a single class displaying the original image,
TABLE 6 Classification performance indicators of the combined CNN-
LSTM framework for detecting jackfruit leaf disorders.

Classes Precision Recall F1-score Accuracy

Algal_Leaf_Spot_of
_Jackfruit

1.00 0.97 0.98

0.98
Black_Spot_of_

Jackfruit
1.00 1.00 1.00

Healthy_Leaf_of_
Jackfruit

0.94 0.99 0.96
TABLE 7 Classification report for CNNAttLSTM model.

Classes Precision Recall F1-score Accuracy

Algal_Leaf_Spot_of
_Jackfruit

1.00 0.99 0.99

0.99
Black_Spot_of
_Jackfruit

1.00 1.00 1.00

Healthy_Leaf_of_
Jackfruit

0.97 1.00 0.98
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FIGURE 8

Performance metrics (a) Training accuracy, (b) Training loss, (c) Training precision, (d) Training recall, (e) Confusion matrix, (f) ROC curve, for custom
CNN and LSTM.
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FIGURE 9

Performance metrics (a) Training accuracy, (b) Training loss, (c) Training precision, (d) Training recall, (e) Confusion matrix, (f) ROC curve for
CNNAttLSTM model.
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the Grad-CAM heatmap, and both. The heatmaps denote the

intensity of colour to show the most significant parts of the

model that contribute to the prediction, with red and yellow parts

representing the most important, and blue parts representing the

least important, respectively. In the case of Algal Leaf Spot and

Black Spot leaves, the model pays particular attention to the

coloured part or the diseased part, which is in itself a

confirmation that the model can identify patterns related to

disease. On the other hand, the activation in the Healthy Leaf

row is spread more uniformly over the leaf surface, implying that

the model correlates even colouration, which is green, with healthy

leaves. On the whole, the model is capable of learning to localise the

symptoms of disease to classify it correctly.
FIGURE 10

Grad-CAM images of the proposed CNNAttLSTM model pay attention to areas of the algal leaf spot, black spot, and healthy jackfruit leaves. Red and
yellow colours indicate that the models pay close attention to disease areas, whereas blue ones have less relevance.
TABLE 8 Computational efficiency comparison of different models.

Model Parameters (Millions) Training time (min)
Inference time (ms/

image)
Accuracy (%)

Custom CNN 3.8 85 35 86

CNN-LSTM 4.5 70 28 98

Proposed CNNAttLSTM 3.7 (-18%) 45 22 99
Bold values indicate the highest performance metric for each class/model.
TABLE 9 Five-fold cross-validation results of the proposed CNNAttLSTM
model.

Fold Accuracy (%) Precision Recall F1-score

Fold 1 98.94 0.984 0.985 0.984

Fold 2 99.1 0.987 0.986 0.986

Fold 3 98.82 0.982 0.983 0.983

Fold 4 98.76 0.981 0.982 0.981

Fold 5 98.72 0.983 0.981 0.982

Mean ±
SD

98.87 ± 0.24
0.983 ±
0.002

0.983 ±
0.002

0.983 ±
0.002
Bold values indicate the highest performance metric for each class/model.
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5 Ablation study

To validate the contributions of key components in our

CNNAttLSTM Model, systematically ablate LSTM and attention

mechanisms, comparing performance against baselines in Table 10.

The Custom CNN (86% accuracy) struggles with healthy leaf recall

(0.32), while adding LSTM boosts F1-scores (0.96) but retains

minor misclassifications. Integrating attention further refines

results (99% accuracy, 1.00 recall for healthy leaves), confirming

its role in feature refinement. Figure 11 demonstrates the relative

performance across different models.
6 State-of-the-art comparison

A detailed comparison of the proposed CNNAttLSTM model

with existing state-of-the-art methods is presented in Table 11. To

comprehensively evaluate the robustness of various deep learning

architectures for disease classification in jackfruit leaves, several

state-of-the-art transformer-based deep models were applied to

38,019 images of the Jackfruit Leaf Disease Dataset. Results

showed that early hybrid models like Hybrid CNN–Vision

Transformer, which combined convolutional feature extraction
Frontiers in Plant Science 18
with transformer-based contextual understanding, reported an

accuracy of 81.30%. Then, later architectures such as the PMVT

and SPT–LSA ViT further improved the performance to 87.60%

and 88.57%, respectively, through the introduction of attention

mechanisms together with localized feature representations. In

addition, based on this self-attention technique, the Enhanced

ViT reported an accuracy of 89.50%, while the Efficient Swin

Transformer obtained an accuracy of 80% by employing

hierarchical feature fusion. PLA-ViT marked a significant

milestone in feature analysis with high precision for leaf features,

obtaining an accuracy of 93%. Finally, the CNNAttLSTM integrates

CNNs for spatial feature extraction, LSTM networks for learning

sequential patterns, and attention mechanisms to focus on disease-

relevant image sections and achieves the best performance of 99%

accuracy. This really shows the exceptional capability of this model

in capturing complex spatiotemporal relationships and fine-grained

texture variations present within the jackfruit leaf images,

outperforming state-of-the-art transformer-based models.

This work is unique in three important ways compared to

existing studies. First a pseudo-temporal patch-based modelling

strategy is introduced in which each image is decomposed into

ordered 56×56 patches, allowing the LSTM to learn spatial–

contextual relationships across leaf regions—an approach not

used in previous jackfruit or plant disease classification works.

Second, unlike prior models that rely solely on CNNs, transfer

learning, or Transformer-based architectures, the proposed model

uniquely integrates a lightweight CNN backbone, sequential

modelling through LSTM, and a temporal attention mechanism

within one framework, enabling selective emphasis on disease-

critical patches. Third, while many existing SOTA models are

computationally heavy, CNNAttLSTM achieves higher accuracy

(99%) with only 3.7M parameters and 22 ms inference time, making

it significantly more efficient and suitable for real-time and edge-
FIGURE 11

Comparative analysis of model performance accuracy.
TABLE 10 Ablation results.

Model variant Accuracy
F1-score
(Healthy)

Recall
(Healthy)

Custom CNN 86% 0.45 0.32

CNN-LSTM
(No Attention)

98% 0.96 0.99

Proposed
CNNAttLSTM Model

99% 0.98 1.00
frontiersin.org

https://doi.org/10.3389/fpls.2025.1720471
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tuteja et al. 10.3389/fpls.2025.1720471
device agricultural deployment. These aspects collectively

distinguish this work from prior research.
7 Conclusion and future work

This study has thoroughly investigated three deep-learning

models for classifying jackfruit leaf disease, demonstrating

continuous performance improvement through sequential

enhancements to the architecture. The first baseline model was a

Custom CNN that achieved an accuracy of 86 per cent but was

unable to classify healthy leaves (recall = 0.32) correctly. The

addition of LSTM layers (CNN-LSTM) resulted in a significant

improvement in accuracy to 98%, which was able to overcome the

detection problem of healthy leaves (recall = 0.99). The

CNNAttLSTM architecture has shown the best results with 99%

accuracy and almost perfect classification in all categories and high

precision (0.97) and F1-scores (0.98). The ablation analysis revealed

that both the LSTM and attention components were relevant to

these gains, with attention making a particularly significant

contribution to the improvement in feature refinement and

reduction of misclassification rates. Empirical evidence supports

the concept that the joint use of CNN-based feature extraction and

sequential modelling, along with attention mechanisms, can

significantly increase the accuracy of plant disease detection.

Future research suggestions consist of increasing the sample size

and including more types of diseases and diverse environmental

conditions to enhance generalisation; developing light-weight

implementations of the model to deploy it in fields in agriculture;

applying explainable AI model to provide interpretable results to

the end-user; developing real-time monitoring platforms by

combining the model with IoT sensors in the field; and modifying

the architecture to other crops and to more critical plant health

measurements. Additional edge computing and on-site testing
Frontiers in Plant Science 19
optimisation in real-life agricultural settings would aid in proving

the robustness and reducing the discrepancy between controlled-

environment performance and applicability in the field, particularly

in terms of precision agriculture. A notable limitation of this study

is that the dataset used was entirely collected from jackfruit-growing

regions within Bangladesh. Consequently, the model’s performance

may vary under different environmental conditions, lighting setups,

and disease manifestation patterns that occur in other geographical

locations. Future work will focus on improving the model’s

generalizability by retraining or fine-tuning the CNNAttLSTM

architecture on region-specific datasets and by validating it

against independent data collected from other jackfruit-producing

countries such as India, Thailand, and Malaysia. Incorporating

diverse climatic and ecological conditions will enable the model

to learn broader disease features, thereby enhancing its adaptability

for global agricultural use.

While the proposed CNNAttLSTM model is designed to be

lightweight and suitable for real-time deployment on edge devices,

several challenges must still be addressed, including limited on-

board memory, lower computational throughput, restricted power

budgets, and potential latency variations under field conditions. To

mitigate these issues, the model can be further optimized using

techniques such as quantization (8-bit or mixed precision), weight

pruning, and model distillation to reduce parameter size and

memory footprint without degrading accuracy. Additionally,

deploying the model on hardware-efficient accelerators (e.g.,

NVIDIA Jetson Nano, Google Coral Edge TPU) and using

optimized inference engines such as TensorRT or TFLite can

significantly improve speed and energy efficiency. Offline caching

of feature maps, batching strategies, and adaptive input resizing can

also help overcome bandwidth and resource limitations. Therefore,

although edge deployment presents inherent challenges, these can

be effectively eradicated through targeted optimization strategies,

ensuring the model’s practical usability in real agricultural settings.
TABLE 11 Comparative analysis of state-of-the-art leaf disease classification models.

Ref. Model Technique
Performance
metrics (%)

(De Silva and Brown, 2023) Hybrid CNN–Vision Transformer
Convolutional Neural Networks (CNNs) + Vision

Transformers (ViTs)
81.30%

(Li et al., 2023) Plant-based Mobile Vision Transformer (PMVT)
Modified MobileViT Backbone + Convolutional Block
Attention Module + Vision Transformer Encoder +

Residual Fusion
87.60%

(Lye and Ng, 2023) SPT–LSA ViT (Vision Transformer)
Vision Transformer + Shifted Patch Tokenization (SPT)

+ Locality Self-Attention (LSA)
88.57%

(Ali et al., 2025) Enhanced Vision Transformer (ViT) Vision Transformer (ViT) + Self-attention mechanisms 89.50%

(Zhang and Liu, 2025) Efficient Swin Transformer
Swin Transformer + Selective Token Generator +

Feature Fusion Aggregator
80%

(Murugavalli and Gopi, 2025)
PLA-ViT (Precision Leaf Analysis with Vision

Transformers)
Vision Transformer (ViT) + multi-head self-attention 93%

Proposed CNNAttLSTM Model CNN + LSTM + Attention Mechanism 99%
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