Estudio sobre la percepción de los estudiantes de Bachillerato en Enfermería al utilizar la evaluación clínica objetiva estructurada (ECOE) en simulación clínica en cursos de Enfermería en Puerto Rico

Artículo Materias > Educación Universidad Internacional Iberoamericana Puerto Rico > Investigación > Artículos y libros Abierto Español El estudio que se presenta estuvo dirigido a la exploración de la percepción de estudiantes de Bachillerato en Enfermería sobre la utilización de la Evaluación Clínica Objetiva Estructurada (ECOE / OSCE) en cursos de enfermería en una universidad en Puerto Rico. La ECOE, es una metodología educativa internacionalmente reconocida por su validez y fiabilidad para evaluar las competencias clínicas en los profesionales de ciencias de la salud de manera formativa y (o) sumativa. El paradigma de la investigación es cuantitativo no experimental descriptivo transversal. Los datos fueron recopilados, mediante la aplicación de un cuestionario semiestructurado con preguntas abiertas y cerradas utilizando la escala Likert. Para el análisis estadístico se utilizaron medidas de tendencia central y dispersión, frecuencias, porcentajes y el coeficiente de correlación de Pearson. Preguntas abiertas relacionadas con fortalezas, debilidades y recomendaciones relacionadas a la ECOE mencionadas por los estudiantes, fueron examinadas mediante el análisis de contenido. Los resultados de la distribución porcentual y absoluta de los estudiantes por ítems del cuestionario utilizado para este estudio, revelaron que los participantes percibían la ECOE como una herramienta de ayuda en la evaluación de destrezas clínicas en enfermería. Los resultados comprobaron, además, la efectividad de la ECOE para medir el logro de las competencias profesionales en cursos de enfermería. Mediante las propias expresiones de los estudiantes en cuanto a las fortalezas y debilidades de la ECOE, pudieron identificarse áreas a mejorar al utilizar la misma en cursos de enfermería. metadata Rivera Vélez, Reina del Carmen mail rerivera@suagm.edu (2018) Estudio sobre la percepción de los estudiantes de Bachillerato en Enfermería al utilizar la evaluación clínica objetiva estructurada (ECOE) en simulación clínica en cursos de Enfermería en Puerto Rico. MLS Educational Research, 2 (2). pp. 211-225. ISSN 26035820

Texto completo no disponible.

Resumen

El estudio que se presenta estuvo dirigido a la exploración de la percepción de estudiantes de Bachillerato en Enfermería sobre la utilización de la Evaluación Clínica Objetiva Estructurada (ECOE / OSCE) en cursos de enfermería en una universidad en Puerto Rico. La ECOE, es una metodología educativa internacionalmente reconocida por su validez y fiabilidad para evaluar las competencias clínicas en los profesionales de ciencias de la salud de manera formativa y (o) sumativa. El paradigma de la investigación es cuantitativo no experimental descriptivo transversal. Los datos fueron recopilados, mediante la aplicación de un cuestionario semiestructurado con preguntas abiertas y cerradas utilizando la escala Likert. Para el análisis estadístico se utilizaron medidas de tendencia central y dispersión, frecuencias, porcentajes y el coeficiente de correlación de Pearson. Preguntas abiertas relacionadas con fortalezas, debilidades y recomendaciones relacionadas a la ECOE mencionadas por los estudiantes, fueron examinadas mediante el análisis de contenido. Los resultados de la distribución porcentual y absoluta de los estudiantes por ítems del cuestionario utilizado para este estudio, revelaron que los participantes percibían la ECOE como una herramienta de ayuda en la evaluación de destrezas clínicas en enfermería. Los resultados comprobaron, además, la efectividad de la ECOE para medir el logro de las competencias profesionales en cursos de enfermería. Mediante las propias expresiones de los estudiantes en cuanto a las fortalezas y debilidades de la ECOE, pudieron identificarse áreas a mejorar al utilizar la misma en cursos de enfermería.

Tipo de Documento: Artículo
Palabras Clave: Percepción, ECOE, competencias, estudiantes de Enfermería, simulación
Clasificación temática: Materias > Educación
Divisiones: Universidad Internacional Iberoamericana Puerto Rico > Investigación > Artículos y libros
Depositado: 14 Jun 2022 23:30
Ultima Modificación: 14 Jun 2022 23:30
URI: https://repositorio.unib.org/id/eprint/2360

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a class="ep_document_link" href="/15625/1/s41598-024-74127-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Smart agriculture: utilizing machine learning and deep learning for drought stress identification in crops

Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the physiological responses of plants mostly crops to drought stress have been revealed through the use of complex algorithms like gradient boosting, support vector machines (SVM), recurrent neural network (RNN), and long short-term memory (LSTM), combined with a thorough examination of the TYRKC and RBR-E3 domains in stress-associated signaling proteins across a range of crop species. Modern resources were used in this study, including the UniProt protein database for crop physiochemical properties associated with specific signaling domains and the SMART database for signaling protein domains. These insights were then applied to deep learning and machine learning techniques after careful data processing. The rigorous metric evaluations and ablation analysis that typified the study’s approach highlighted the algorithms’ effectiveness and dependability in recognizing and classifying stress events. Notably, the accuracy of SVM was 82%, while gradient boosting and RNN showed 96%, and 94%, respectively and LSTM obtained an astounding 97% accuracy. The study observed these successes but also highlights the ongoing obstacles to AI adoption in agriculture, emphasizing the need for creative thinking and interdisciplinary cooperation. In addition to its scholarly value, the collected data has significant implications for improving resource efficiency, directing precision agricultural methods, and supporting global food security programs. Notably, the gradient boosting and LSTM algorithm outperformed the others with an exceptional accuracy of 96% and 97%, demonstrating their potential for accurate stress categorization. This work highlights the revolutionary potential of AI to completely disrupt the agricultural industry while simultaneously advancing our understanding of plant stress responses.

Producción Científica

Tariq Ali mail , Saif Ur Rehman mail , Shamshair Ali mail , Khalid Mahmood mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Tahir Khurshaid mail , Imran Ashraf mail ,

Ali

<a href="/15198/1/nutrients-16-03859.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Carotenoids Intake and Cardiovascular Prevention: A Systematic Review

Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.

Producción Científica

Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,

Sumalla Cano

<a href="/15441/1/journal.pone.0313835.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

StackIL10: A stacking ensemble model for the improved prediction of IL-10 inducing peptides

Interleukin-10, a highly effective cytokine recognized for its anti-inflammatory properties, plays a critical role in the immune system. In addition to its well-documented capacity to mitigate inflammation, IL-10 can unexpectedly demonstrate pro-inflammatory characteristics under specific circumstances. The presence of both aspects emphasizes the vital need to identify the IL-10-induced peptide. To mitigate the drawbacks of manual identification, which include its high cost, this study introduces StackIL10, an ensemble learning model based on stacking, to identify IL-10-inducing peptides in a precise and efficient manner. Ten Amino-acid-composition-based Feature Extraction approaches are considered. The StackIL10, stacking ensemble, the model with five optimized Machine Learning Algorithm (specifically LGBM, RF, SVM, Decision Tree, KNN) as the base learners and a Logistic Regression as the meta learner was constructed, and the identification rate reached 91.7%, MCC of 0.833 with 0.9078 Specificity. Experiments were conducted to examine the impact of various enhancement techniques on the correctness of IL-10 Prediction. These experiments included comparisons between single models and various combinations of stacking-based ensemble models. It was demonstrated that the model proposed in this study was more effective than singular models and produced satisfactory results, thereby improving the identification of peptides that induce IL-10.

Producción Científica

Salman Sadullah Usmani mail , Izaz Ahmmed Tuhin mail , Md. Rajib Mia mail , Md. Monirul Islam mail , Imran Mahmud mail , Carlos Eduardo Uc Ríos mail carlos.uc@unini.edu.mx, Henry Fabian Gongora mail henry.gongora@uneatlantico.es, Imran Ashraf mail , Md. Abdus Samad mail ,

Usmani

<a href="/15444/1/s41598-024-79106-7.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Roman urdu hate speech detection using hybrid machine learning models and hyperparameter optimization

With the rapid increase of users over social media, cyberbullying, and hate speech problems have arisen over the past years. Automatic hate speech detection (HSD) from text is an emerging research problem in natural language processing (NLP). Researchers developed various approaches to solve the automatic hate speech detection problem using different corpora in various languages, however, research on the Urdu language is rather scarce. This study aims to address the HSD task on Twitter using Roman Urdu text. The contribution of this research is the development of a hybrid model for Roman Urdu HSD, which has not been previously explored. The novel hybrid model integrates deep learning (DL) and transformer models for automatic feature extraction, combined with machine learning algorithms (MLAs) for classification. To further enhance model performance, we employ several hyperparameter optimization (HPO) techniques, including Grid Search (GS), Randomized Search (RS), and Bayesian Optimization with Gaussian Processes (BOGP). Evaluation is carried out on two publicly available benchmarks Roman Urdu corpora comprising HS-RU-20 corpus and RUHSOLD hate speech corpus. Results demonstrate that the Multilingual BERT (MBERT) feature learner, paired with a Support Vector Machine (SVM) classifier and optimized using RS, achieves state-of-the-art performance. On the HS-RU-20 corpus, this model attained an accuracy of 0.93 and an F1 score of 0.95 for the Neutral-Hostile classification task, and an accuracy of 0.89 with an F1 score of 0.88 for the Hate Speech-Offensive task. On the RUHSOLD corpus, the same model achieved an accuracy of 0.95 and an F1 score of 0.94 for the Coarse-grained task, alongside an accuracy of 0.87 and an F1 score of 0.84 for the Fine-grained task. These results demonstrate the effectiveness of our hybrid approach for Roman Urdu hate speech detection.

Producción Científica

Waqar Ashiq mail , Samra Kanwal mail , Adnan Rafique mail , Muhammad Waqas mail , Tahir Khurshaid mail , Elizabeth Caro Montero mail elizabeth.caro@uneatlantico.es, Alicia Bustamante Alonso mail alicia.bustamante@uneatlantico.es, Imran Ashraf mail ,

Ashiq