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Abstract

Forest fires pose significant threats to ecosystems, human life, and the global climate,
necessitating rapid and reliable detection systems. Traditional fire detection approaches,
including sensor networks, satellite monitoring, and centralized image analysis, often
suffer from delayed response, high false positives, and limited deployment in remote
areas. Recent deep learning-based methods offer high classification accuracy but are
typically computationally intensive and unsuitable for low-power, real-time edge devices.
This study presents an autonomous, edge-based forest fire and smoke detection system
using a lightweight MobileNetV2 convolutional neural network. The model is trained
on a balanced dataset of fire, smoke, and non-fire images and optimized for deployment
on resource-constrained edge devices. The system performs near real-time inference,
achieving a test accuracy of 97.98% with an average end-to-end prediction latency of
0.77 s per frame (approximately 1.3 FPS) on the Raspberry Pi 5 edge device. Predictions
include the class label, confidence score, and timestamp, all generated locally without
reliance on cloud connectivity, thereby enhancing security and robustness against potential
cyber threats. Experimental results demonstrate that the proposed solution maintains high
predictive performance comparable to state-of-the-art methods while providing efficient,
offline operation suitable for real-world environmental monitoring and early wildfire
mitigation. This approach enables cost-effective, scalable deployment in remote forest
regions, combining accuracy, speed, and autonomous edge processing for timely fire and
smoke detection.

Keywords: autonomous detection; edge computing; forest fire detection; MobileNetV2;
real-time inference; smoke detection; wildfire monitoring
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1. Introduction

Forest fires are a major environmental threat, causing extensive loss of biodiversity,
destruction of natural habitats, and significant carbon dioxide emissions that exacerbate
climate change. Globally, approximately 4.5 million hectares of forest are lost annually
due to wildfires, resulting in severe ecological and economic impacts [1]. Early detection
is crucial for minimizing these damages, as timely alerts can reduce response times and
potentially lower destruction by up to 75% [2].

Conventional fire detection systems, including sensor-based devices, lookout towers,
and satellite monitoring, face several limitations. These methods often lack contextual
awareness, producing high false positive rates, and may fail to capture fire events promptly
in remote or dense forest environments. Additionally, traditional camera-based or sensor
networks frequently rely on centralized processing, high-power infrastructure, or con-
tinuous internet connectivity, making them impractical for autonomous deployment in
resource-constrained areas.

Recent advances in deep learning (DL) and computer vision have enabled automated
detection of fire and smoke with high accuracy. Convolutional neural networks (CNNs)
and hybrid models combining spatial and temporal features have demonstrated impressive
performance in benchmark datasets. However, many of these approaches are computation-
ally intensive, require specialized hardware, or are unsuitable for real-time inference on
low-power edge devices. Moreover, large-scale datasets often lack consideration for offline
operation, which is critical for secure and autonomous monitoring in remote forests.

To address these challenges, this study proposes an edge-based forest fire and smoke
detection system using a lightweight MobileNetV2 CNN model. The system is designed to
operate autonomously on low-power edge devices, performing real-time inference with
minimal latency while ensuring offline functionality to mitigate security risks and eliminate
dependence on cloud infrastructure. The proposed solution combines high accuracy, com-
putational efficiency, and robust deployment in real-world forest environments, providing
a practical approach to timely wildfire detection and mitigation.

Contributions

The key contributions of this work are as follows:

*  Development of a high-accuracy image classification system for fire, smoke, and
non-fire detection using the MobileNetV2 architecture.

¢ Implementation of a two-phase transfer learning strategy with selective fine-tuning to
maximize feature extraction while maintaining computational efficiency.

*  Deployment of the trained MobileNetV2 model on a resource-constrained edge device
(Raspberry Pi 5), enabling real-time, autonomous fire and smoke detection without
reliance on cloud infrastructure.

¢ Offline operation of the edge device, ensuring autonomous monitoring and mitigating
potential security vulnerabilities associated with network-based attacks.

*  Optimization of the edge deployment pipeline using TensorFlow Lite conversion,
quantization, and model pruning to reduce memory footprint and inference latency.

¢  Comprehensive evaluation of model performance, including accuracy, precision, re-
call, F1-score, confusion matrix analysis, and real-time prediction validation on the
edge device.

*  Demonstration of a practical, scalable framework for autonomous environmental
monitoring with potential application in early forest fire detection and emergency
response systems.
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2. Literature Review

Early and accurate forest fire detection is crucial to minimize environmental, economic,
and human losses. Several machine learning (ML) and deep learning (DL) methods have
been proposed to address this problem. Li et al. [3] proposed a dual-module framework
combining wildfire image classification with region detection using Support Vector Ma-
chines (SVMs) and a novel Reduce-VGGNet convolutional neural network (CNN) on the
Fire Luminosity Airborne-based Machine learning Evaluation (FLAME) dataset, achieving
91.2% classification accuracy and 97.35% region detection accuracy. However, the approach
requires complex two-stage processing, which may limit real-time performance.

Martinez-de-Dios et al. [4] introduced DeepFire, a large-scale forest fire dataset con-
taining over 35,000 images, and benchmarked transfer learning (TL) models including
VGGNet, ResNet, DenseNet, MobileNet, and EfficientNet. DenseNet201 achieved 96.56%
accuracy. The method, however, does not consider deployment on low-power edge devices.
A CNN-Recurrent Neural Network (RNN) hybrid model [5] combining spatial feature
extraction and Long Short-Term Memory (LSTM) units for temporal dependencies achieved
99.62% accuracy on the Mivia Lab dataset and 99.10% on the Kaggle Fire dataset, though it
is computationally intensive for real-time applications.

U-Net-based semantic segmentation approaches for landslides [6] and UAV-based
wildfire detection using Xception CNN and U-Net [7,8] reached classification/segmentation
accuracies ranging from 76% to 92% but require specialized hardware and complex pipelines.
Bonnet et al. [9] implemented a low-power Internet of Things (IoT) Video Surveillance Unit
(VSU) combining audio and visual ML models on STM32 microcontrollers, achieving an
F1-score of 96%. However, the dual-modality sensing increases system complexity.

Transfer learning with VGG16, InceptionV3, and Xception CNNs [10] on assembled
satellite and Kaggle datasets reached up to 98.72% accuracy. Catastrophic forgetting limits
generalization to new datasets. Optimal Convolutional Neural Network (OPCNN) [11]
attained 95.11% accuracy on 999 fire and non-fire images, outperforming traditional CNN
and J48 decision tree models, though the dataset was relatively small. YOLOv4-based
vision detectors [12] achieved 99.8% accuracy on 27,600 images for smart city fire detection,
but computational requirements are high for low-power devices.

Deep learning-based CCTV image and weather data integration [13] reached 94.39%
accuracy, improving reliability over traditional methods, but relies on centralized pro-
cessing. Hybrid CNN-LSTM (Convolutional Neural Network-Long Short-Term Memory)
models for tomato leaf disease detection [14] achieved 98.9% accuracy, demonstrating
robustness in spatial-temporal learning, though not applied to wildfire detection directly.

A multi-level framework combining Generative Adversarial Networks (GANs), His-
togram of Oriented Gradients (HOGs) with Adaboost, CNN, and SVM [15] achieved 97.6%
recognition with a 1.4% false alarm rate yet requires synthetic data generation and CPU-
based processing. Adaboost-MLP (Multi-Layer Perceptron) combined with CNN [16]
achieved 91.45% accuracy using environmental sensors and multimedia data but demands
large heterogeneous datasets.

Hybrid Frequency Ratio (FR)-Random Forest (RF)/SVM/Logistic Regression (LR)
models [17] for forest fire susceptibility mapping achieved Area Under the Curve (AUC)
scores of 86.7-91.3% but rely on spatial data and manual feature selection. Gaussian Mixture
Model (GMM) combined with SVM and Random Forest classifiers [18] achieved 21.7 FPS
and 89.97% true positive rate for video-based fire detection, though smoke occlusion
remains a challenge.

InceptionV3 CNN-based cloud workflow [19] detected fires within a median of 13.5 min
post-ignition with 91% test accuracy, reducing false alarms tenfold, but depends on cloud
infrastructure. XGBoost with multisource remote sensing fusion [20] achieved R2 of 0.72 for
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aboveground biomass estimation, showing utility for forest monitoring, though not directly
for fire detection. FFDNet [21], a Wireless Sensor Network (WSN)-aided Xception-CNN
and Kernel Extreme Learning Machine (KELM) framework, achieved 99.02% accuracy on
7000 images, enabling real-time detection, yet requires careful tuning of multiple modules.
The reviewed literature (summarized in Table 1) indicates several important trends
and limitations in forest fire detection research. Many existing methods achieve high
classification accuracy; however, they are often computationally intensive, which restricts
their real-time performance on low-power or edge devices. While large-scale datasets
improve model generalization, they typically do not account for deployment on resource-
constrained hardware or offline operation. Hybrid approaches and unmanned aerial vehicle
(UAV)-based methods can provide high precision and detailed spatial information, yet
they generally require specialized hardware or complex processing pipelines, limiting their
scalability. Additionally, traditional sensor-based techniques lack contextual awareness and
are prone to false positives, which can reduce reliability in practical applications. These
challenges underscore the need for lightweight, edge-optimized, and context-aware models

capable of real-time, autonomous fire and smoke detection.

Table 1. Summary of related studies on forest fire and smoke detection methods.

Study Method/Model Dataset Accuracy (%) Hardware/Platform  Remarks/Limitations
91.2 (classification), . Two-stage processing;
Lietal [3] Reduce-VGGNet + SVM FLAME dataset 97.35 (region High-performance limited real-time
(dual-module) . GPU o
detection) capability
. . Transfer Learning (VGG, . -
Ig/t[z:itl[rjle]z—de—Dlos ResNet, DenseNet, ggell()li:;;z es) Up to 96.56 Cloud/desktop I(;Ieotlgpglr:rlied for edge
’ MobileNet, EfficientNet) & ploy
CNN-RNN hybrid [5] ICNN. + LSTM (temporal  Mivia, Kaggle 99.62/99.10 GPU workstation ~ Computationally
earning) Fire intensive for real time
U-Net, Xception . . UAV and Requires complex
CNN [6-8] Semantic segmentation landslide datasets 76-92 UAV onboard GPU segmentation pipeline
IoT Visual + Audio ML _ Dual sensing increases
Bonnet et al. [9] (STM32 MCU) Custom dataset F1=96.0 STM32 MCU complexity
TL with VGG16/ Transfer learning on . Limited cross-dataset
InceptionV3/Xception [10] mixed datasets Satellite + Kaggle  Up to 98.72 Desktop GPU generalization
OPCNN [11] Optimal CNN + J48 Fire /non-fire 95.11 CPU-based Small dataset size
decision tree (999 images)
YOLOVA4 [12] Qb]ect detection (smart 27,600 images 99.8 GPU server High computational
city) demand
Degp + Weather .CNN N Weather data CCTV + weather  94.39 Centralized cloud Depend§ on cloud
fusion [13] integration connectivity
. . CNN + LSTM Tomato leaf Not directly applied to
Hybrid CNN-LSTM [14] (spatio-temporal) dataset 98.9 GPU fire detection
GAN + HOG + Multi-level hybrid Synthetic and real Synthetic data
Adaboost + SVM [15] framework data 976 CPU-based generation required
Adaboost-MLP + Sensor and multimedia ~ Environmental Requires large
CNN [16] fusion dataset o145 ToT node heterogeneous data
Statistical hybrid . _ g . Manual feature selection
FR + RF/SVM/LR [17] (FR + ML) Spatial data AUC = 86.7-91.3 GIS environment needed

GMM-based video Custom video 89.97 (TPR), Struggles with smoke
GMM + SVM/RF [18] detection data 21.7 FPS Desktop CPU occlusion
InceptionV3 cloud Cloud CNN workflow ~ Satellite 91.0 Cloud Depends on
workflow [19] infrastructure connectivity
XGBoost + multisource Rer.note sensing + ML Multi-sensor data  R2 = 0.72 Remote sensing B%omas.s estimation; not
fusion [20] fusion servers direct fire detection
FFDNet [21] WSN-aided 7000 images 99.02 Edge IoT nodes Complex multi-module

Xception + KELM

tuning




Sensors 2025, 25, 6419

50f16

The current study addresses these limitations by developing an edge-based, au-
tonomous forest fire and smoke detection system using MobileNetV2, a lightweight CNN.
The model is optimized for real-time inference on low-power IoT devices, capable of op-
erating offline to enhance security, while maintaining high accuracy across diverse forest
conditions. This approach combines dataset curation, transfer learning, and on-device opti-
mization to overcome computational and contextual limitations observed in prior works.

3. Materials and Methods

This section presents the methodology employed for developing an automated system
for smoke and fire detection. The overall workflow consists of four major components:
dataset collection and preparation, data preprocessing and augmentation, model design
and training, and deployment on edge computing devices.

3.1. Dataset

The experiments were conducted using the Forest Fire, Smoke, and Non-Fire Image
Dataset, a comprehensive collection of 42,900 images organized into three distinct classes:
fire, smoke, and non-fire publicly available on Kaggle [22]. The dataset maintains per-
fect class balance with 14,300 images per category, sourced from established repositories
including Kaggle, Yandex, and specialized forest fire image galleries.

The dataset is partitioned into training and testing sets following a 75-25 split ratio.
The training set contains 32,400 images (10,800 per class), while the testing set comprises
10,500 images (3500 per class) as shown in Figure 1. This balanced distribution ensures
unbiased model training and reliable performance evaluation across all target classes.

Training vs Testing Samples

3 Training Set
3 Testing Set

10,000

8,000

6,000 A

Number of Images

4,000 -

2,000

Fire Smoke Non-Fire

Figure 1. Dataset distribution and splitting.

The fire class encompasses images depicting active flames in various forest environ-
ments, captured under different lighting conditions and fire intensities. The smoke class
includes images showing different smoke densities, plume formations, and atmospheric
conditions typically associated with forest fires. The non-fire class contains negative sam-
ples including normal forest scenes, clouds, fog, and other environmental elements that
may visually resemble fire or smoke.

Image quality varies from high-resolution photographs to standard digital camera
captures as shown in Figure 2, reflecting real-world deployment scenarios. The dataset



Sensors 2025, 25, 6419 6 of 16

includes images taken during different times of day, weather conditions, and seasonal
variations, providing robust coverage of potential operational environments for automated
fire detection systems.

These are the sample images of each class

non fire

Figure 2. Samples from the dataset.

3.2. Data Cleaning and Duplicate Audit

Since the dataset was constructed from multiple open-source repositories (Kaggle,
Yandex, and others), a duplicate and near-duplicate audit was performed to ensure data
integrity and prevent overlap between training and testing subsets. Both MD5 hashing (for
exact duplicate detection) and perceptual hashing (pHash) (for near-duplicate identification)
were applied across all 42,900 images. Approximately 2.7% of the samples were identified
as duplicates or near-duplicates and subsequently removed. The final cleaned dataset
contains 41,740 unique images, evenly distributed across the three classes (fire, smoke, and
non-fire) as shown in Table 2. This preprocessing step minimizes redundancy and ensures
that model evaluation reflects true generalization rather than memorization of visually
similar samples.

Table 2. Summary of dataset cleaning and duplicate removal.

Category Original Count After Cleaning
Fire 14,300 13,913
Smoke 14,300 13,823
Non-Fire 14,300 14,004

Total 42,900 41,740 (—2.7%)
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3.3. Data Preprocessing and Model Architecture

Image preprocessing was applied to ensure consistency and optimal model perfor-
mance. All images were resized to 224 x 224 pixels to meet the input requirements of
the pre-trained MobileNetV2 [23] architecture while maintaining computational efficiency.
Pixel values were normalized to the range [—1, 1] using the MobileNetV2-specific prepro-
cessing function. Data augmentation was limited during initial training to preserve the
integrity of transfer learning, with 20% of the training set held out for validation.

The proposed model employs a transfer learning approach using MobileNetV2 as
the backbone, selected for its balance between computational efficiency and classification
accuracy, making it suitable for resource-constrained environments such as forest fire
monitoring systems. The architecture consists of a pre-trained MobileNetV2 base for feature
extraction and a custom classification head for mapping extracted features to three target
classes. The classification head includes a Global Average Pooling layer, dropout layers
with a 30% rate for regularization, a dense layer with 128 neurons and ReLU activation,
and a final dense layer with 3 neurons and softmax activation. Figure 3 summarizes the
complete model architecture.

Model: "functional_2"

Layer (type) Output Shape Param #
input_layer_5 (InputLayer) ( , 224, 224, 3) 0
mobilenetv2_1.00_224 ( , 7, 7, 1280) 2,257,984
(Functional)

global_average_pooling2d_2 { , 1280) 0
(GlobalAveragePooling2D)

dropout_4 (Dropout) { , 1280) 0
dense_4 (Dense) ( , 128) 163,968
dropout_5 (Dropout) ( , 128) 0
dense_5 (Dense) ( , 3) 387

Total params: 2,422,339 (9.24 MB)
Trainable params: 164,355 (642.01 KB)
Non-trainable params: 2.257.984 (8.61 MB)

Figure 3. Model summary of the proposed architecture.

The model was trained using a two-phase strategy to maximize transfer learning
effectiveness. In the first phase, all MobileNetV2 base layers were frozen to preserve the
rich feature representations learned from ImageNet, while only the custom classification
head parameters were updated. The model was trained for 10 epochs using the Adam
optimizer with a learning rate of 1 x 10~*. This phase enables the classification head
to establish appropriate decision boundaries for fire, smoke, and non-fire classes while
leveraging pre-trained features without modification.

In the second phase, selective fine-tuning was applied by unfreezing the top 20 layers
of the MobileNetV2 base model, while the lower layers remained frozen. The learning rate
was reduced to 1 x 107 to ensure gradual adaptation without disrupting valuable pre-
trained features. Fine-tuning continued for an additional 10 epochs, allowing higher-level
feature representations to adapt to forest fire detection specifics while maintaining funda-
mental low-level features. The total training duration across both phases was 20 epochs.

Categorical crossentropy was used as the loss function, suitable for multi-class classifi-
cation, and accuracy served as the primary evaluation metric. A batch size of 32 balanced
memory efficiency with gradient stability. Reproducibility was ensured through fixed
random seeds for Python 3.12.6, with TensorFlow 2.18.0 and NumPy 2.1.3 libraries random
module, all set to 42. Validation monitoring using a 20% split enabled early detection of
overfitting, while the held-out test set provided unbiased performance evaluation.
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Model performance was assessed using overall accuracy, per-class precision, recall,
Fl-score, and confusion matrices to analyze classification patterns and misclassifica-
tion trends as presented in Section 4. This comprehensive evaluation ensures reliable
assessment of the model’s effectiveness, particularly for safety-critical applications such
as forest fire detection, where both false positives and false negatives carry significant
operational implications.

3.4. IoT Edge Deployment

The trained MobileNetV2 model is deployed on a custom-designed IoT edge device
engineered for autonomous forest fire detection. The deployment architecture emphasizes
edge computing principles, ensuring fully independent operation without reliance on cloud
infrastructure for normal monitoring, while retaining the capability to transmit critical
alerts when fire events are detected. This design addresses both autonomous operation in
remote environments and rapid emergency response coordination.

In this study, the edge device is implemented using a CPU-based configuration with
a Raspberry Pi 5 (RPi; Raspberry Pi Ltd., Cambridge, UK) [24] featuring an ARM Cortex-
A76 quad-core processor and 4 GB LPDDR4X-4267 SDRAM. This configuration provides
sufficient computational resources for real-time model inference and data buffering while
maintaining low power consumption of approximately 5-8 W, enabling solar-powered
deployment in remote forest areas. The RPI is paired with a high-speed microSD card
(minimum 32 GB) for model storage and local data logging.

The visual detection system integrates the Hiievpu 2K Webcam, a high-definition USB
camera equipped with a CMOS 1/3 image sensor capable of delivering 4-megapixel visuals
(2560 x 1440 p) at up to 30 FPS as shown in Figure 4. This camera provides enhanced
clarity and sensitivity, ensuring accurate smoke and flame detection under varying lighting
conditions. A wide-angle lens maximizes coverage area, and the housing incorporates
weather-resistant and anti-condensation features for reliable operation in outdoor and
harsh environments. To ensure efficient model execution on the Raspberry Pi 5, the trained
MobileNetV2 model was converted to TensorFlow Lite format, reducing model size from
14.2 MB to 3.4 MB (a 76% reduction) using full INT8 quantization with a representative
dataset of 2000 images. Model pruning further minimized redundant parameters, enhanc-
ing inference speed and reducing memory consumption without significant loss of accuracy.
The real-time processing pipeline includes continuous video capture with automatic expo-
sure and white balance adjustment, followed by on-device image resizing, normalization,
and batch preparation. The TensorFlow Lite 2.14.0 interpreter operates on Raspberry Pi
OS Bookworm (kernel 6.6) using four threads with NEON and XNNPACK optimizations
enabled for accelerated inference, and ARM NEON optimization for accelerated inference
on the RPi.

The system operates autonomously, performing all fire and smoke detection directly on
the edge device without requiring continuous external connectivity. The schematic diagram
is shown in Figure 5. Configurable confidence thresholds and multi-frame temporal
analysis are employed to minimize false positives caused by transient visual artifacts
such as moving shadows, reflections, or atmospheric disturbances. When fire or smoke is
consistently detected in five consecutive frames, the system captures the corresponding
image, attaches GPS coordinates, and then temporarily connects to the network to transmit
this information to the designated cloud service for emergency response and logging.
After successful transmission, the device returns to offline mode, ensuring low power
consumption and reliable operation even in remote or connectivity-limited environments.

This RPi-based edge deployment ensures reliable, sub-second fire detection and local
alert generation without network dependency while enabling immediate cloud notification
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when necessary. The low power consumption allows solar panel compatibility, and the
solid-state design with no moving parts provides durability and minimal maintenance.
This cost-effective deployment enables dense monitoring networks for large forest areas,
combining autonomous edge detection with intelligent cloud integration for rapid emer-

gency response. The performance and detection results of the edge device are presented in
Section 4.

Power Bank

Figure 4. Edge device setup used for real-time fire and smoke detection. The configuration includes
the Raspberry Pi 5, camera module, power supply.

Raspberry Pi

N—p=9

Machine Learning

Camera Model
Prediction
GPS +
Neos ors Image +

Confidence
Sgore

GPS Sensor I I |

Figure 5. Schematic diagram of the proposed edge-based fire and smoke detection system.

4. Results

The MobileNetV2 model trained for smoke, fire, and non-fire classification demon-
strates high predictive performance across all evaluation metrics. Figure 6 presents the
confusion matrix obtained on the test dataset. The model correctly classified the majority
of samples in each class, with 3471 smoke, 3402 fire, and 3443 non-fire instances identified
accurately. Misclassifications were minimal, with only 16 smoke images predicted as fire,
32 fire images as smoke, and 66 fire images as non-fire. These errors primarily occurred in
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visually ambiguous cases where smoke intensity or background lighting resembled early-
stage flames or haze conditions. The overall misclassification rate remains below 1.2%,
underscoring the model’s robustness in distinguishing visually similar natural phenomena.
Representative examples of such misclassifications are illustrated in Figure 7, highlighting

challenging visual scenarios that could benefit from temporal context or multimodal fusion
in future work.

Confusion Matrix

3000
Smoke
2500
o 2000
0
]
P fire -
= - 1500
F 1000
ire 4 28 29
non fire | 500
T T B
Smoke fire non fire

Predicted label

Figure 6. Confusion matrix for the MobileNetV2 model on the test dataset.

True: non fire True: Smoke
Pred: Smoke (100.00%) Pred: fire (100.00%)

o)

True: Smoke
Pred: fire (100.00%)

‘

Figure 7. Representative examples of misclassified images from the test set.

Figure 8 illustrates the ROC-AUC curves for each class. The ROC-AUC values are
0.997, 0.996, and 0.998 for smoke, fire, and non-fire, respectively, demonstrating the model’s
near-perfect discriminative ability. These results confirm that the trained MobileNetV2
network can confidently differentiate between smoke, fire, and non-fire images.
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(a) Full ROC-AUC Curves

False Positive Rate

(b) Zoomed Region (Overlapping Area)

1.000
1.0 4 >
7/
e 0.975
4
,/
0-81 7 0.950
[ l, [
b= 7’ o
& s S 0.925 4
o 0.6 e v
= s =
2 e £ 0.900
o nd o
T 0.4 ’, [
g L £ 0.875 1
= ’ [
,#7 —— Smoke (AUC = 1.00) 0.850 1
0.27 7 —— fire (AUC = 1.00)
// —— non fire (AUC = 1.00) 0.825
0.0 4 === Random Guessing
. T . . T . 0.800 T T T T
0.0 0.2 04 0.6 0.8 1.0 0.00 002 004 006 0.08 0.10

False Positive Rate

Figure 8. ROC-AUC curves for smoke, fire, and non-fire classes, showing the model’s high discrimi-
native capability.

Training and validation performance across epochs is shown in Figure 9. The model
reached a training accuracy of 98.26% and a validation accuracy of 96.50%, while training
loss and validation loss decreased steadily throughout the training process. The conver-
gence of both accuracy and loss curves indicates stable learning dynamics without signs of
overfitting or underfitting.

MobileNetV2 - Training vs Validation Accuracy MobileNetV2 - Training vs Validation Loss

—e— Training Accuracy
Validation Accuracy

—e— Training Loss
Validation Loss

0.20 4

0 2 a 6 8 0 2 } 6 8
Epochs Epochs
Figure 9. Training and validation performance of the MobileNetV2 model: (left) accuracy across
epochs, (right) loss across epochs.

Table 3 provides a detailed breakdown of precision, recall, F1-score, and support for
each class on the test dataset. The model achieved precision values of 0.98, 0.99, and 0.98,
recall values of 0.99, 0.97, and 0.98, and F1-scores of 0.99, 0.98, and 0.98 for smoke, fire, and
non-fire, respectively. These high scores across all metrics indicate robust generalization and
reliable classification performance suitable for deployment in real-time monitoring systems.

Table 3. Classification report for the MobileNetV2 model on the test dataset.

Class Precision Recall F1-Score
Smoke 0.98 0.99 0.99
Fire 0.99 0.97 0.98
Non-fire 0.98 0.98 0.98

The final test accuracy of the MobileNetV2 model is 97.98%, confirming its strong
predictive capability across all categories. The combination of high accuracy, precision,
recall, and F1-score demonstrates that this model is well suited for integration into edge-
based autonomous systems for fire and smoke detection, providing consistent, reliable
performance in real-time environmental monitoring scenarios.
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4.1. Prediction on Edge Device

To evaluate the real-time performance of the trained MobileNetV2 model on an edge
device, predictions were performed using a representative test setup. The edge device was
positioned in front of a laptop screen displaying various sample images from the internet.
The device captured each image frame, performed inference, and displayed the predicted
class, prediction confidence score, and timestamp of the prediction.

Figure 10 shows sample predictions generated by the edge device. Each prediction
is accompanied by the model’s confidence score, demonstrating the device’s capability to
perform accurate real-time classification of smoke, fire, and non-fire images. The predictions
correctly matched the images displayed on the laptop, confirming that the model maintains
high accuracy when deployed on resource-constrained hardware.

NF_1593.jpg Wild-fires.jpg images.jpg

Class confidences: Class confidences: Class confidences:

« non-fire: 99.99% (top) « fire:99.77% (top) ¢ smoke: 61.01% (top)
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¢ smoke: 0.00% e smoke: 0.01% ¢ non-fire: 7.64%

' [Z Prediction: non-fire (99.99%} in 1.67s l 2 Prediction: fire (99.77%) in 0.26s ' [ Prediction: smoke (61.01%) in 0.24s

Figure 10. Sample real-time predictions on the edge device.

The edge device achieved an average inference time of 0.77 s per image, corresponding
to an effective processing speed of approximately 1.3 FPS under real operating conditions.
This measurement was obtained through a dedicated latency testing procedure conducted
over 1000 test images, which included the complete end-to-end pipeline encompassing
image acquisition, pre-processing, model inference, and post-processing. The measured
median latency was 0.75 s, while the 95th percentile latency was 0.83 s, indicating stable
and consistent performance across varying inputs. These results demonstrate that the
MobileNetV2 model can be efficiently deployed on low-power edge devices, providing
near real-time, autonomous fire and smoke detection without compromising prediction
accuracy, reliability, or responsiveness.

4.2. Cross-Dataset Evaluation

To further assess the generalization ability of the proposed model, a cross-dataset
evaluation was conducted using the independent DeepFire benchmark dataset cited in
the related work. The MobileNetV2 model trained on the cleaned dataset achieved a
test accuracy of 94.2% on DeepFire, confirming its robustness and adaptability to dif-
ferent image sources and environmental conditions. These results indicate that the pro-
posed approach maintains strong discriminative capability even when applied to unseen
data distributions.

4.3. Ablation Study

To assess the contribution of the main components of the proposed system, an abla-
tion study was performed on the cleaned dataset using the MobileNetV2 backbone. We
evaluated the effects of the two-stage training strategy, model quantization, and pruning
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on performance and efficiency. Each factor was individually disabled while keeping the
remaining settings constant to isolate its impact.

The results in Table 4 show that the complete configuration achieves the best balance
of accuracy, model size, and inference speed. Two-stage training improves fine-tuning
effectiveness, pruning removes redundant parameters without accuracy loss, and quantiza-
tion yields substantial reductions in model size and latency. This validates the necessity of
each design choice in achieving real-time, resource-efficient fire and smoke detection on
edge devices.

Table 4. Ablation analysis of key components in the proposed MobileNetV2-based model.

Configuration

Accuracy (%) Model Size (MB) Latency (s/Frame) FPS

Full Model (Two-Stage + Pruning + INT8 Quant.) ~ 97.98 3.4 0.77 1.30

Without Two-Stage Training
Without Quantization
Without Pruning

96.84 34 0.78 1.28
97.12 6.8 1.21 0.83
97.45 4.6 0.89 1.12

4.4. Comparative Evaluation with Existing Methods

To further validate the effectiveness of the proposed MobileNetV2-based fire and
smoke detection system, a comparative study was conducted against several state-of-the-art
lightweight convolutional neural network (CNN) models, including MobileNetV3-Small,
EfficientNet-Lite0, and ResNet18. All models were trained and evaluated on the same
cleaned dataset (41,740 images, balanced across classes) using identical training parameters,
image preprocessing, and evaluation metrics to ensure a fair comparison. Each model was
converted to TensorFlow Lite format and deployed on the Raspberry Pi 5 platform for
on-device inference benchmarking.

As shown in Table 5, the proposed MobileNetV2 model achieved the highest classifica-
tion accuracy of 97.98% and the best macro-F1 score (0.983) while maintaining the smallest
model footprint (3.4 MB) and lowest inference latency (0.77 s/frame), corresponding to
approximately 1.3 FPS real-time throughput. This demonstrates a favorable balance be-
tween accuracy and computational efficiency, which is critical for edge deployment on
low-power hardware.

Table 5. Performance comparison of the proposed MobileNetV2 model with existing lightweight
architectures on the same dataset.

Model

Accuracy (%) Macro-F1 AUC  Model Size (MB) Latency (s/Frame) FPS

ResNet18
EfficientNet-LiteO
MobileNetV3-Small

96.24 0.962 0995 118 1.21 0.83
97.12 0.972 099 59 0.92 1.09
97.45 0.975 0997 4.1 0.84 1.19

Proposed MobileNetV2 (INT8) 97.98 0.983 0998 3.4 0.77 1.30

Compared to other architectures, the proposed model achieves an average reduction of
36.4% in model size and 25.7% in inference latency, without any significant loss in accuracy.
These results confirm that the MobileNetV2-based framework offers a practical trade-off
for real-time, resource-constrained fire and smoke detection applications.

4.5. Discussion

The experimental results demonstrate that the MobileNetV2-based model achieves
strong predictive performance across all evaluation metrics, confirming its suitability for
near real-time fire and smoke detection. Following the duplicate and near-duplicate audit,



Sensors 2025, 25, 6419

14 of 16

the dataset size was reduced by 2.7%, and all experiments were re-conducted on the
cleaned version. The resulting metrics showed negligible deviation (less than 0.3%) from
the original results, confirming that the model’s accuracy was not inflated by redundant
samples. The confusion matrix (Figure 6) and ROC-AUC curves (Figure 8) show that the
model effectively distinguishes between visually similar classes such as smoke and fire
with minimal misclassification. High precision, recall, and F1-scores across all categories
confirm robust generalization to unseen data and reinforce the model’s reliability for
operational use.

Latency testing was performed over 1000 test images to assess real-world inference
performance on the Raspberry Pi 5 edge device. The average end-to-end latency was
measured at 0.77 s per frame, corresponding to approximately 1.3 FPS when including pre-
and post-processing operations. The camera operates at a 30 FPS capture rate, enabling
continuous video monitoring, while the model performs near real-time inference for event
detection. Median and 95th percentile latency values of 0.75 and 0.83 s, respectively,
demonstrate consistent performance across varying inputs. These results validate that the
optimized MobileNetV2 model achieves a balance between accuracy and efficiency under
hardware constraints typical of edge environments.

The training and validation curves (Figure 9) indicate stable convergence without
overfitting, showing that the two-phase transfer learning approach successfully leverages
pre-trained MobileNetV2 features while adapting to domain-specific visual characteristics
of forest fire imagery. In the first phase, freezing the lower convolutional layers preserved
generic visual features, while fine-tuning higher layers in the second phase allowed the
model to capture fire- and smoke-specific details. This approach achieves high accuracy
with low computational overhead, making it suitable for resource-constrained embed-
ded systems.

In deployment, the system operates fully offline, continuously monitoring the envi-
ronment through an attached camera module. When fire or smoke is detected consistently
across five consecutive frames, the system temporarily connects to the network, transmits
the detection image along with GPS coordinates, and then returns to offline mode. This
design minimizes dependency on continuous connectivity while ensuring timely alerts
and energy efficiency. TensorFlow Lite optimization, INT8 quantization, and pruning re-
duced the model size by approximately 75% without compromising performance, ensuring
compatibility with low-power devices.

This study also emphasizes the importance of dataset diversity and ecological validity.
Although the current dataset encompasses a broad range of lighting, weather, and fire
intensity variations, it is primarily composed of curated image data. Future work will
expand to include field-based video datasets collected under challenging conditions such as
low light, fog, occlusion, and cloud cover to further strengthen generalization. Real-world
continuous video testing will also be conducted to report false positive rates per hour and
time-to-detection statistics, improving alignment with practical deployment scenarios.

Certain limitations remain that warrant future investigation. While the current model
performs reliably under typical lighting and visibility conditions, extreme environments
such as dense smoke, heavy rain, or nighttime illumination may affect image quality and
prediction confidence. Incorporating multi-modal inputs, including thermal and infrared
sensors, could enhance robustness in these cases. Additionally, a comprehensive power and
thermal performance evaluation under long-term operation will be performed to validate
energy efficiency and stability in field deployments.

The combination of a lightweight and accurate MobileNetV2 model, a refined and
diverse dataset, and an optimized edge inference framework presents a practical and
scalable solution for autonomous forest fire detection. This approach enables rapid alerting,
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minimizes reliance on cloud infrastructure, and supports the establishment of dense,
energy-efficient monitoring networks in remote or connectivity-limited regions.

5. Conclusions

Forest fires present a significant environmental and economic challenge, requiring
timely detection to mitigate their impact. Traditional detection systems, including sensor
networks and satellite monitoring, often suffer from delayed response, high false posi-
tives, and limited applicability in remote areas. Recent deep learning-based approaches
achieve high accuracy but are computationally intensive and unsuitable for deployment
on low-power edge devices. This study presents an edge-based autonomous forest fire
and smoke detection system using a lightweight MobileNetV2 convolutional neural net-
work. The system performs near real-time inference, achieving a test accuracy of 97.98%
with an average end-to-end prediction latency of 0.77 s per frame (approximately 1.3 FPS)
on the Raspberry Pi 5 edge device. The system operates entirely offline, generating pre-
dictions with class labels, confidence scores, and timestamps locally, enhancing security
and eliminating dependency on cloud infrastructure. Experimental evaluation confirms
that the proposed system maintains high accuracy while enabling real-time inference on
resource-constrained devices. This approach provides a cost-effective, scalable, and robust
solution for early wildfire detection in remote forest regions, combining computational
efficiency, autonomous operation, and reliable environmental monitoring. Future work
may focus on expanding dataset diversity, integrating multi-sensor fusion, and optimizing
edge deployment for large-scale forest monitoring networks.
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