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Schizophrenia is a mental disorder characterized by hallucinations, delusions, disorganized thinking 
and behavior, and inappropriate affect. Early and accurate diagnosis of schizophrenia remains a 
challenge due to the disorder’s complex nature and the limitations of state-of-the-art techniques. 
It is evident from the literature that electroencephalogram (EEG) signals provide valuable insights 
into brain activity, but their high dimensionality and complexity pose remain key challenges. Thus, 
our research introduces a novel approach by integrating the multichannel EGG, Crossover-Boosted 
Archimedes Optimization Algorithm (CAOA), and Rough Set Theory (RST) for schizophrenia detection. 
It is a four-stage model. In the first stage, Raw EGG data is collected. The data is passed to the next 
stage, which is called data preprocessing. This is used for artifact removal, band-pass filtering, and data 
normalization. The preprocessed data passed to the next stage. In the feature extraction stage, feature 
selection is performed using CAOA. In addition, classification is performed using a Support Vector 
Machine (SVM) based on features extracted through Multivariate Empirical Mode Function (MEMF) 
and entropy measures. The data interpretation stage displays the results to the end user using the data 
interpretation stage. We experimented and tested our proposed model using real EEG datasets. The 
simulation results prove that the proposed model achieved an average accuracy of 94.9%, sensitivity 
of 93.9%, specificity of 96.4%, and precision of 92.7%. Thus, our proposed model demonstrates 
significant improvements over state-of-the-art methods. In addition, the integration of CAOA and 
RST effectively addresses the challenges of high-dimensional EEG data, helps optimize the feature 
selection process, and increases accuracy. In future work, we suggest incorporating large-size datasets 
that include more diverse patient groups and refining the model with advanced machine-learning 
models and techniques.
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Schizophrenia is a complex chronic brain disorder that is characterized by symptoms such as delusions, 
cognitive deficits, and hallucinations1. Schizophrenia has various symptoms, such as delusions, hallucinations, 
and cognitive difficulties, and presents in millions of individuals worldwide. Schizophrenia is a paralyzing 
mental disorder, which most times results in severe impacts on one’s life, which includes difficulties in thinking, 
emotions, and social interactions. Nonetheless, timely diagnosis remains a challenge due to the subjective nature 
of clinical assessments and the complexity of the disorder. According to the World Health Organization (WHO), 
it is estimated that about 21 million people across the world suffer from schizophrenia, while a significant 
proportion of cases are either left undiagnosed or inadequately treated due to the obstacles in early detection and 
diagnosis2. Early diagnoses and treatments are critical in managing schizophrenia since they improve the patient’s 
quality of life3. However, the traditional state-of-the-art methods for this disease focus on clinical interviews and 
subjective estimation, which are long and have human error. The researchers are working with EEG signals 
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for the identification and detection of schizophrenia Because EEG signals reflect electrical brain activity and 
provide a piece of valuable information on the neurological status of a schizophrenic. Thus, this unique aspect 
makes it possible to implement and use for quantitative diagnostics4. However, high dimensionality in EEG data 
remains a key challenge. It is evident from the current literature that machine learning (ML) was used in EGG 
signals. However, ML models can’t accurately process due to the complexity of EEG signals5. In addition, the 
traditional state-of-the-art approaches are very time-consuming and prone to interpretive variability. Thus, this 
delays intervention results and decreases morbidity and mortality6,7.

Traditional diagnosis methods relied on clinical interviews and subjective decisions; these proved inadequate 
in early detection and showed inconsistencies. On the other hand, EEG signals were relatively successful in the 
identification of neurotic patterns related to schizophrenia, but the high dimensionality and complexity of EEG 
data present substantial obstacles. All these have failed the current ML methods and feature selection in dealing 
with these complexities, overfitting, increased computational costs, and reduced diagnostic accuracy. Due to the 
complexity and volume, state-of-the-art techniques have significant challenges in handling high-dimensional 
EEG data. Traditional methods, such as Principal Component Analysis (PCA) or Genetic Algorithms (GA), are 
often used to balance dimensionality in the reduction and information retention. Thus, it leads to the potential 
loss of critical features and is essential for accurate classification. Additionally, many methods like Particle Swarm 
Optimization (PSO) and Random Forests (RF) are prone to overfitting, especially when applied to noisy EEG 
datasets8. These limitations hinder the generalizability and reliability of state-of-the-art models. In addition, 
it emphasizes the need to develop a more robust and efficient optimization solution. Thus, it is the primary 
motivation of our research. Our research introduces a novel approach by integrating the multichannel EGG, 
CAOA, and RST for schizophrenia detection. It is a layered model and has stages. The raw data is collected in the 
first stage. The second stage is used for artifact removal, band-pass filtering, and normalization. Third, feature 
selection is performed using CAOA and an SVM classification. The data interpretation stage shows the result to the 
end users. Our proposed approach enhances the accuracy and reduces the computational load. It not only solves 
the dimensionality problem but also improves the efficiency of the diagnostic process. The simulation results 
prove that the proposed model achieved an average accuracy of 94.9%, sensitivity of 93.9%, specificity of 96.4%, 
and precision of 92.7%. Thus, the proposed model demonstrates significant improvements over state-of-the-art 
methods. In addition, the integration of CAOA and RST effectively addresses the challenges of high-dimensional 
EEG data, helps optimize the feature selection process, and increases accuracy. The main contributions of this 
study are as follows. We propose a novel four-stage framework for detecting and diagnosing schizophrenia using 
multichannel EEG data. The stages include: (1) EEG data acquisition, (2) preprocessing (artifact removal, band-
pass filtering, and normalization), (3) feature extraction and selection, and (4) classification and interpretation. 
Integrating the CAOA with RST introduces a customized feature selection approach, effectively addressing the 
high dimensionality challenge in EEG data. Robust signal decomposition and complexity quantification are 
achieved using Multivariate Empirical Mode Decomposition (MEMD) and entropy-based measures (ApEn and 
SampEn), leading to a richer and more discriminative feature set. The proposed model employs an SVM classifier 
optimized for high-dimensional biomedical data, improving accuracy, sensitivity, specificity, and precision.

The rest of the paper is structured as follows. In Sect. "State-of-the-art models", we present a literature 
review. This section traces the existing studies on EEG-based schizophrenia detection, pointing out the current 
methods and their limitations. The proposed methodology section details data collection, preprocessing, and the 
proposed model, which integrates CAOA with RST for feature selection and SVM for classification. The Results 
and Discussion section quantitatively evaluates the performance of the proposed model compared to several 
methods on different EEG datasets. Finally, the paper concludes with a conclusion and future work section, 
summarizing the contributions and suggesting directions for further research.

State-of-the-art models
Schizophrenia has been one of the most studied diseases in terms of detection and diagnosis. Traditional 
methods, based mainly on clinical assessment, have many drawbacks concerning objectivity and consistency, 
especially with the introduction of advanced ML and signal-processing techniques. Nowadays, to overcome 
these shortcomings, researchers are increasingly investigating EEG signals for detecting schizophrenia in 
a non-invasive and objective way9. Previous studies in this area have focused on classifying the EEG signals 
in schizophrenic patients by applying several MLAs. Some of the early techniques are Linear Discriminant 
Analysis (LDA) and SVM, which, with some measure of success, attempted to differentiate between normal 
and schizophrenic people using EEG data10. However, such methods can face problems with many features 
of EEG signals, such as overfitting and longer computation time. More sophisticated methods have been 
developed to cope with these challenges. For example, automatic methods have been used in deep learning 
models, such as convolutional neural networks (CNNs), to extract features from EEG signals. Although these 
models have increased the performance of schizophrenia detection, These models are computationally complex 
and demand a large training dataset11. CNNs are criticized for being ‘black box’ models, where it is difficult 
to ascertain the importance of features in arriving at the diagnosis. Subsequent research has been undertaken 
to refine the process of dimensionality reduction. The EEG data is simplified using PCA and Independent 
Component Analysis (ICA). Though these methods help reduce the computational loads, they may also tend 
to lose useful information, decreasing the possibility of an accurate diagnosis12. Other works have concentrated 
on identifying the optimal feature subset regarding the trade-off between dimensionality savings and diagnostic 
performance. Some algorithms, such as GA and PSO, have been employed to choose the best features likely 
to significantly impact classification based on EEG signals to perform this with less likelihood of overfitting13. 
However, as expected, much of this work can be improved in terms of methodological efficacy and efficiency 
for schizophrenia detection involving EEG data. This work extends from prior studies by availing the CAOA 
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algorithm and applying RST14. The goal is to improve the feature selection method, increase the identification 
of diseases, and minimize the algorithm’s computational complexity, which was discussed in previous research.

EEG signals for schizophrenia detection have been widely explored, and many methods have been investigated 
to enhance diagnosis performance. Firstly, an attempt was made to classify EEG signals with ML algorithms such 
as SVM and RF. These methods formed the basis of automated schizophrenia detection but, in most cases, these 
methods fail due to the high dimensionality and noise associated with the EEG data15.

Deep learning models have been adopted mostly because they are in a position to learn features and extract 
information from raw EEG signals. In the current study, CNNs and recurrent neural networks (RNNs) are used 
most often and have been found to give better results in schizophrenia detection. However, these models are 
computationally intensive and demand a large quantity of labeled data, and their application in clinical practice 
remains problematic16,17.

Another important area of study for dealing with the challenges of EEG data is dimensionality reduction 
techniques. PCA and ICA were mainly applied to reduce features before the classification stage. Although these 
methods assist in reducing computational costs, they reduce the amount of information that is fed into the 
diagnostic process and, thus, the accuracy of the diagnosis18,19. Recently, optimization algorithms have been 
used to improve feature selection from EEG signals. Feature selection has been done using PSO and GA to 
enhance classification accuracy while avoiding the problem of overfitting20. These approaches look promising, 
but standard and efficient techniques that can be applied in real-time EEG applications are still lacking. 
Therefore, the present study extends these developments by proposing a new combination of the CAOA with 
the RST. This approach will work towards the enhancement of the feature selection process, enhancement of the 
accuracy and efficiency of schizophrenia detection, and eradication of the observed limitations in the previous 
studies. Despite the success of the attempts to design an EEG-based schizophrenia recognition system, there are 
some research gaps in this field. Among them, there is still the uncontrolled usage of basic ML algorithms like 
SVM and RF. While these models have turned out very handy in the automation of schizophrenia detection, 
they encounter problems arising from the high dimensionality of the EEG data, which may need extensive 
preprocessing as well as possible feature extraction, which may lead to data loss21. However, CNNs and RNNs 
have been demonstrated to perform better in some cases, but these approaches require significant amounts of 
labeled data and computational power. This makes them less applicable in real-time clinical situations, which 
require fast processing22. Another gap lies in the suboptimal optimization of feature selection. Though PCA 
and ICA are used for dimensionality reduction in EEG data, they may sometimes discard crucial information, 
leading to inaccurate diagnoses. Additionally, most strategies have not been tested for robustness across 
real-world and diverse EEG datasets. Furthermore, although optimization algorithms like GA and SA show 
promise, they have not been fully developed for real-time use and sometimes arrive at suboptimal feature sets 
due to their inherent randomness23. Recent studies have explored deep learning and effective connectivity for 
schizophrenia detection. Shoeibi et al.24 used dDTF-based connectivity with pre-trained CNN and transformer 
models, showing strong performance in EEG classification tasks. Bagherzadeh and Shalbaf25 combined effective 
connectivity maps with CNNs and transfer learning to improve diagnostic accuracy. Another study proposed a 
hybrid deep-learning model using EEG-derived connectivity images for robust detection26. While effective, these 
models require significant computational resources. Our work offers a more efficient alternative by integrating 
CAOA and RST for optimized feature selection with high accuracy and lower complexity. Recent research 
continues to advance EEG-based approaches for diagnosing neurological and psychiatric disorders, including 
schizophrenia. Sharma et al. (2022) proposed an innovative method using iterative filtering and phase space 
reconstruction to classify EEG signals, achieving notable improvements in precision and interpretability for 
psychiatric applications27. Similarly, introduced a hybrid deep learning model combining convolutional layers 
with attention mechanisms to capture both spatial and temporal EEG dynamics effectively28. In another study 
utilized variational mode decomposition with deep features, enhancing the classification accuracy for EEG-
based mental state identification29. Most recently, Roy et al. (2024) explored transfer learning and lightweight 
CNN architectures, demonstrating promising results for generalizing EEG-based diagnosis across disorders30. 
Most studies are conducted under controlled conditions with small, homogeneous samples that do not represent 
the variability found in clinical practice, making generalization and practical applicability challenging31. These 
gaps suggest the importance of proposing better, optimized, and more high-level approaches to feature selection 
and classification in schizophrenia detection based on EEG signals. To address these issues, this research 
proposes a novel method of improving the CAOA model with the aid of the RST to gain much better accuracy 
and efficiency in real-time clinical applications. Table 1 systematically describes the significant aspects covered 
in the reviewed literature on schizophrenia identification based on EEG signals. It makes comparing different 
approaches based on learning algorithms, dimensionality reduction, deep learning, optimization techniques, or 
their time-critical applications easier.

Propose methodology
In this section, we explain our proposed approach. The first stage in our proposed approach is data acquisition. 
This activity covers capturing multichannel EEG data from schizophrenia patients and artifacts from healthy 
individuals. It is followed by pre-processing, where all the data is cleaned. The isolation removes the image from 
other data and eliminates the artifacts, noise, etc. In this stage, preprocessing steps were applied to the EEG 
data. These steps are band-pass filtering, baseline correction, and normalization, etc. The next step is to move 
preprocess data to the next stage, which is called feature extraction. In this stage, RST was applied for feature 
selection. The selected features are based on the patient’s condition and are classified with the help of SVM to 
diagnose schizophrenia. The stage also contains information on how it is prepared, as well as the hardware and 
software settings and characteristics that enable the efficient operation of the model. The details of the proposed 
methodology are given in below Fig. 1.
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Stage 1: data collection
This research uses a dataset that has multichannel EEG signals from samples of patients with schizophrenia and 
normal individuals32. The dataset is popular in diagnosing and tracking neurological disorders, for instance, 
Schizophrenia. The dataset includes EEG signals of several scalp electrodes according to the international 
system 10–20. This dataset is composed of patients with schizophrenia, in contrast to healthy volunteers who 
are matched by age, which makes for an equivalent control group from affected subjects. The patients in the 
dataset were clinically diagnosed based on the set international criteria to obtain a defined dataset of the target 
condition. Every EEG recording is acquired at a high rate, from 250 Hz to 1000 Hz, to obtain a high-resolution 
signal of the brain’s electrical activity. It is usually filtered to eliminate matters due to such factors as eye blinks, 
muscle movements, and extraneous electrical noise. Standard preprocessing entails a band-pass filter, ICA, 
and visual inspection to guarantee useable signals. The data also contained primary data about subjects (age or 
gender), more specific clinical characteristics (duration of illness, current medication use), and characteristics 
of the tasks (eyes open or closed). This metadata is, therefore, important for qualitatively supporting the EEG 
measurements and results.

Stage 2: data preprocessing
We have proposed an arithmetic process for correcting and preparing EEG signals. We have used artifact 
rejection, band-pass filtering, baseline correction, epoching, normalization, and channel selection. Data 
augmentation and dimensionality reduction are not included in the preprocessing. These eliminate noise and 

Fig. 1.  Proposed Approach for Identification and the Diagnosis of Schizophrenia Using Multichannel EEG.

 

Ref. ML Technique
Dimensionality 
Reduction DL

Optimization 
Algorithm

EEG Signal 
Preprocessing

Accuracy 
Improvement

Computational 
Efficiency

Real-Time 
Application

Validation 
with 
Real-World 
Data

12 √ x √ X √ √ x x x
13 √ √ x √ √ √ √ x √
14 x √ √ √ x √ √ √ x
15 √ x √ X √ x x √ x
16 √ √ x √ √ √ √ x √
17 √ √ √ X x √ √ √ x
18 x √ √ √ √ x x √ √
19 √ x x √ √ √ x x √
20 √ √ √ √ √ √ √ x x
21 √ x √ √ x √ x √ √

Table 1.  Summary of State of Art on Schizophrenia Detection using EEG Signals.
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artifacts, compare data, and concentrate on the most informative channels. As a result, the effectiveness of ML 
models used to identify schizophrenia increases.

Stage 3: applying feature extraction

The feature selection used in this work and the classification are done by two familiar algorithms, the CAOA 
and the SVM, respectively. A brief mathematical description of both algorithms is given below. In this stage, we 
apply Algorithm 1. Algorithm 1 is based on the physical law of Archimedes, where the force required to float a 
body is equal to the weight of the water displaced by the body.

1. Initialization: 

Let = { , , … , } represent the initial population of solutions. 

Each solution  is associated with a volume , a density , and an acceleration . 

2. Volume and Density Update: 

The volume  and density of each solution are updated iteratively based on the fitness function ( ). The updated volume 

and density are given by: 

( )
=

( )
+

( )

( )
=

( )
+

( )

Where  and  are learning rates, and  and  Represent the volume and density of the best solution found so far. 

3. Acceleration Update: 

The acceleration  Is updated using the density and volume: 

( )
= ×

( )

( )

Where  is a control parameter 

4. Position Update: 

 The new position of each solution is determined by updating its velocity and position using: 

( )
=

( )
+

( )

where the velocity 
( )

 is given by: 

( )
=

( )
+

( )

5. Crossover Operation: 

 To enhance exploration, a crossover operation is introduced, which combines two parent solutions to generate a new solution:

= + (1 )

Where  is a random crossover rate between 0 and 1. 

6. Selection: 

 After updating the population, the solutions are evaluated using the fitness function. The best solutions are retained for the

next iteration, ensuring the algorithm converges towards an optimal feature subset.

Algorithm 1.  Crossover-Boosted Archimedes Optimization (CAOA).

The CAOA continues performing iterations until some termination condition is reached, such as the rate of 
variation in the fitness function is less than some defined limit or the maximum number of iterations being 
exceeded. CAOA employs a physics-inspired mechanism that dynamically updates solution parameters, such 
as density and volume, to effectively explore and exploit the feature space. This process enables the algorithm 
to reduce dimensionality by identifying the most relevant features while avoiding the risk of losing critical in-
formation. RST complements this by providing a mathematical basis for handling uncertainty and dependency 
among features, ensuring that only the most significant attributes are retained. The main idea of the approach 
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under consideration is the CAOA integrated with RST to select the most important features of the EEG data 
and further classify them by SVM. Algorithm 2 is applied to the problems in basic classification. It identifies 
the appropriate hyperplane that will provide the best level of separation between multiple classes of a high-di-
mensional space.

1. Linear SVM: 

Given a training dataset {( , )} , where  is a feature vector and ∈ {−1,1} is the class label, SVM aims to find a 

hyperplane defined by: 

+ = 0

Where  is the weight vector, and  is the bias. 

2. Optimization Problem: 

The objective is to maximize the margin 
‖ ‖

 Between the two classes while ensuring that all data points are correctly 

classified. This leads to the following optimization problem: 

,

1

2
‖ ‖

 Subject to the constraint: 

( + ) ≥ 1, = 1, … ,

3. Dual Formulation: 

 The problem can be transformed into its dual form, which is more convenient for high-dimensional data: 

−
1

2

Subject to: 

= 0 , and 0 , = 1, … ,

where  Are Lagrange multipliers and  is a regularization parameter that controls the trade-off between maximizing the 

margin and minimizing classification errors. 

4. Kernel Trick: 

For non-linear data, SVM can be extended using kernel functions ( , ) to project the data into a higher-dimensional 

space: 

, = ( )

 Common kernels include: 

Linear: ( , ) =

Polynomial: ( , ) = ( + )

Radial Basis Function (RBF): 

( , ) =  ( )

5 Decision Function: 

The decision function for classifying a new data point  is given by:  

Algorithm 2.  SVM (Key Steps and Mathematical Formulation).

The proposed model’s essence is CAOA in the feature selection and robust SVM in the classification step. This 
approach handles high-dimensional EEG data and, therefore, offers a highly accurate and fast diagnosis of 
schizophrenia. In this stage, we have used special signal processing measures named MEMD and entropy. In 
this stage, both measures were applied to the preprocessed EEG data. MEMD is based on the EMD technique. 
MEMD decomposes the multichannel EEG data into several Intrinsic Mode Functions (IMF) that correspond 
to the oscillatory modes in the signal. The steps in this phase are given in Algorithm 3.
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1. Input Signal Representation: 

Let ( ) = [ ( ), ( ), … , ( )] represent a multivariate EEG signal with mmm channels. 

2. Direction Vectors: 

MEMD utilizes multiple direction vectors to project the multivariate signal in different directions. Each direction vector  This 

can be represented as: 

= [  ( ),  ( ), … ]

where  Is the angle corresponding to the  direction. 

3 Projection of Multivariate Signal: 
The signal is projected onto each direction vector : 

( ) = ( ) = ( )

where ( ) represents the projected signal. 

4. Envelope Estimation and IMF Extraction: 

For each projected signal ( ), local maxima and minima are identified, and corresponding envelopes are constructed. 

 The mean of the envelopes is subtracted from the signal to obtain an IMF. This process is iteratively applied to extract multiple 

IMFs from the signal: 

ℎ( ) = ( ) −
1

2
[ ( ) + ( )]

where ( ) and ( ) are the upper and lower envelopes, respectively. 

5. Recombination of IMFs: 

 The IMFs extracted from each projection are then combined to form multivariate IMFs (MIMFs), representing different frequency 

components of the original multichannel signal: 

( ) = ( ) + ( )

( ) is the residual signal after decomposition. 

6. Feature Extraction: 

 Features such as the mean frequency, energy, and variance of each MIMF are computed, providing a detailed characterization of 

the EEG signal's oscillatory components. 

Algorithm 3.  Multivariate Empirical Mode Function Extraction.

To measure the complexity and randomness of EEG signals, we have used Entropy. The steps to calculate each 
measure of entropy are given in Algorithm 4.
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1. Approximate Entropy (ApEn): 
 ApEn quantifies the regularitSampEn, which is an improvement over ApEn, reducing bias and providing a more stable measure of 

complexity. SampEn is the negative natural logarithm of the conditional probability that two sequences for mmm points remain 

similar at the next point m+1m + 1m+1, without counting self-matches and unpredictability of fluctuations in time series data. 

Given a time series ( ) = { , , … , } and two parameters,  (embedding dimension) and  (tolerance), ApEn is computed 

as: 

( , , ) = ( ) ( )

 Where 

( ) =
1

+ 1
( )

and ( ) is the fraction of patterns of length  that are within a distance  from each other. 

2. Sample Entropy (SampEn): 
 SampEn is an improvement over ApEn, reducing bias and providing a more stable measure of complexity. 

SampEn is defined as the negative natural logarithm of the conditional probability that two sequences similar for points remain 

similar at the next point m+1, without counting self-matches: 

( , , ) =
∑ ∑ ( )

∑ ∑ ( )

where ( ) Is the number of pairs ( , ) that are similar for mmm points, and ( ) Is similar for + 1 points. 

3. Feature Extraction: 

 ApEn and SampEn are computed for the EEG signals to quantify the complexity and the predictability of brain oscillations. These 

entropy measures are especially useful in demarcating between regular brain activity and pathologic conditions like schizophrenia. 

Algorithm 4.  Entropy.

These steps are pertinent in detecting the periodicity and non-stationarity of the EEG signals, which are high- 
and low-frequency activities. The combination of MEMD and entropy measures enables precision and stability.

Fig. 2.  Accuracy comparison Between the Proposed Model and Other Models.

 

Model CHB-MIT (%) TUH EEG (%) BNCI Horizon 2020 (%) Berlin BCI (%) Average (%)

Proposed Model 95.2 93.8 94.5 96.0 94.9

SVM 89.3 88.7 87.9 90.1 88.9

RF 91.4 90.5 91.0 92.2 91.3

Table 2.  Accuracy comparison between the proposed model and other models across different EEG datasets.
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Simulation results and discussion
In this section, an experimental setup design with hardware considerations is designed to take advantage of 
high-performance computing to handle the nature of multichannel EEG data. The hardware was an Intel Core 
i7-10700 K processor with eight cores running at 3.8 GHz, 32 GB of DDR4 RAM, and an NVIDIA GeForce 
RTX 3080 GPU with 10 GB of GDDR6X memory to handle data processing and ML. For storage, there was an 
integrated 1 TB NVMe SSD for fast storage and data access.

We have used Ubuntu 20. 04 LTS, with Python 3. 8 as the main programming language. The NumPy and 
Pandas libraries were used for data manipulation, while SciPy was used for signal processing. The PyTorch 
library was used to implement and train ML models. The Scikit-learn library was used for feature selection and 
classification. MNE-Python was used to handle and preprocess EEG data.

The achieved experimental results were correctly arranged to have a proper study of the experiment. 
Electroencephalography (EEG) data was recorded at 500 Hz across 32 channels. A band-pass filter allowed 
only the frequencies between 0.5 and 50 Hz. MEMD was employed with eight projection directions for the 
signal decomposition to get an effective decomposition. For classification, SVM with an RBF kernel was used, 
with the regularization parameter C set to 1.0 and the gamma value scaled by the inverse of the number of 
features times the variance of the data. These configurations were chosen to balance computational efficiency 
and the accuracy of the schizophrenia detection model. The overall performance of the proposed model for 
schizophrenia detection was evaluated by key metrics: accuracy, sensitivity, specificity, precision, and F1-Score. 
All these measures in the evaluation process clearly showed how effective the model is in identifying cases of 
schizophrenia and correctly eliminating false positives and negatives. Accuracy is one of the key estimators for 
measuring the overall correctness of the predictions made by the model. As summarized in Table 2, the proposed 
model achieved higher classification accuracies for all EEG datasets than the state-of-the-art models SVM and 
RF.

Model CHB-MIT (%)
TUH EEG
(%)

BNCI Horizon 2020
(%)

Berlin BCI
(%)

Average
(%)

Proposed Model 96.5 95.7 96.1 97.2 96.4

SVM 91.0 90.3 89.7 91.5 90.6

RF 93.0 92.5 92.9 94.1 93.1

Table 4.  Specificity comparison for the proposed model and other models.

 

Fig. 3.  Sensitivity (Recall) of the Proposed Model across various EEG Datasets.

 

Model CHB-MIT (%) TUH EEG (%)
BNCI Horizon 2020
(%) Berlin BCI (%) Average (%)

Proposed Model 94.0 92.5 93.3 95.7 93.9

SVM 86.7 85.4 84.9 87.3 86.1

RF 89.2 88.1 88.7 90.0 89.0

Table 3.  Sensitivity comparison between the proposed and other Models.
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Model
CHB-MIT
(%)

TUH EEG
(%)

BNCI Horizon 2020
(%)

Berlin BCI
(%)

Average
(%)

Proposed Model 93.4 92.0 92.8 94.8 93.3

SVM 87.1 86.5 85.4 88.1 86.8

RF 89.5 88.6 89.1 90.3 89.4

Table 6.  F1-Score comparison across different models and EEG Datasets.

 

Fig. 5.  Precision comparison for the Proposed Model across different Datasets.

 

Model
CHB-MIT
(%)

TUH EEG
(%)

BNCI Horizon 2020
(%)

Berlin BCI
(%)

Average
(%)

Proposed Model 92.8 91.6 92.3 94.0 92.7

SVM 87.5 86.3 85.9 88.4 87.0

RF 89.8 89.1 88.9 90.7 89.6

Table 5.  Precision comparison for the proposed versus other Models.

 

Fig. 4.  Specificity comparison for the Proposed and Other Models.
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The indicated accuracy comparison, illustrated in Fig. 2, Accuracy comparison of the proposed CAOA-RST-
based model against traditional SVM and RF classifiers across four benchmark EEG datasets: CHB-MIT, TUH 
EEG, BNCI Horizon 2020, and Berlin BCI. Although only the TUH EEG dataset includes schizophrenia-specific 
data, we incorporate additional publicly available EEG datasets CHB-MIT, BNCI Horizon 2020, and Berlin 
BCI to strengthen our preprocessing pipeline, benchmark model performance, and explore transfer learning 
opportunities. The CHB-MIT dataset enables noise and artifact modeling in pathological EEG. BNCI and Berlin 
BCI datasets, consisting of clean EEG signals from healthy subjects, are leveraged to pretrain generalized feature 
extractors, thereby improving the robustness of downstream schizophrenia classification.

The proposed model consistently outperforms the baseline methods, demonstrating higher average accuracy 
and superior generalization across datasets.

Sensitivity, or recall, measures the model’s ability to correctly identify positive cases (i.e., actual schizophrenia 
cases in TUH EEG). The sensitivity results are presented in Table 3. The proposed model consistently outperforms 
the SVM and RF models in detecting true positives.

Figure  3 Sensitivity (recall) comparison of the proposed model with SVM and RF classifiers across four 
EEG datasets. The proposed model achieves significantly higher sensitivity in identifying true positive cases of 
schizophrenia in TUH EEG, highlighting its effectiveness in minimizing missed diagnoses across diverse EEG 
sources.

Fig. 7.  ROC Curve showing the Trade-off between Sensitivity and Specificity.

 

Fig. 6.  F1-Score comparison and state of the art model.
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Specificity evaluates the model’s ability to correctly identify negative cases (i.e., healthy individuals). Table 4 
shows that the proposed model has a high specificity across all datasets, reducing the likelihood of false positives.

This is visually depicted in Fig. 4, a specificity comparison across four EEG datasets for the proposed model 
versus traditional SVM and RF classifiers. The proposed model demonstrates a superior ability to correctly 
identify healthy cases (true negatives), reducing the rate of false positives and enhancing diagnostic reliability.

Precision reflects the accuracy of the positive predictions made by the model. As depicted in Table 5, the 
proposed model maintains a high precision across all datasets, which is crucial for minimizing false positives.

Figure 5 Precision comparison of the proposed model against SVM and RF across four EEG datasets. The 
proposed model achieves higher precision, indicating a lower false positive rate and stronger confidence in non 
healthy predictions, enhancing diagnostic accuracy.

The F1-Score balances precision and recall and provides a single metric to evaluate the model’s overall 
performance. Table 6 shows the F1 scores across different models and datasets, indicating the proposed model’s 
robustness.

Figure 6 visualizes these F1 scores, illustrating the balanced performance of the proposed approach across 
different models and datasets.

An ROC curve is a graph of a binary classifier system’s sensitivity versus 1 − specificity as its discrimination 
threshold varies. Figure 6 shows an F1-score comparison of the proposed model with SVM and RF classifiers 
across four EEG datasets. The F1-score balances precision and recall and highlights the proposed model’s superior 
overall performance in accurately identifying positive cases while minimizing false positives and negatives.

Fig. 9.  Model Performance Comparison in terms of Processing Time versus Accuracy.

 

Fig. 8.  Proposed Model: Confusion Matrix.
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Figure 7 Receiver Operating Characteristic (ROC) curves for the proposed model, SVM, and RF classifiers. 
The ROC curve illustrates the trade-off between true and false positive rates across different thresholds. The 
proposed model shows the highest area under the curve (AUC), indicating superior overall classification 
performance and stronger discriminatory power over other models.

The confusion matrix in Fig.  8 visually represents the classification performance of the proposed model, 
showing counts of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). This 
matrix will be crucial to understand where the model might be making errors and help diagnose specific areas 
for improvement.

Figure  9 presents a comparison between the processing time of the proposed model and its accuracy 
across different datasets. This figure underscores the model’s efficiency, illustrating how it effectively balances 
computational demands with predictive accuracy. This balance is particularly crucial in real-time applications, 
where speed and accuracy are critical.

Figure 10 shows the impact of different feature selection methods on model accuracy. It compares techniques 
such as the CAOA with others, demonstrating which methods most effectively enhance model accuracy and 
providing new insights into best practices for feature selection in the schizophrenia detection process.

Figure  11 shows how sensitivity is distributed across different EEG channels. It helps identify the most 
informative channels for detecting schizophrenia, guiding future research and model refinement to focus on the 
most relevant brain regions.

Fig. 11.  Distribution of Sensitivity across different EEG Channels for the Proposed Model.

 

Fig. 10.  Impact of Feature Selection Methods on the Accuracy of the Proposed Model.
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Fig. 14.  Specificity Comparison for different EEG Frequency Bands using the Proposed Model.

 

Fig. 13.  Learning Curve of the Model’s Performance Improvement over Training Epochs.

 

Fig. 12.  Impact of varying Regularization Parameters on the Precision of the SVM Classifier.
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Fig. 17.  Model Accuracy Improvement with Different Preprocessing Techniques.

 

Fig. 16.  Impact of Feature Extraction Techniques on Model Sensitivity.

 

Fig. 15.  Precision Distribution across various EEG Datasets.
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Figure 12 shows changes in the CCC regularization parameter in the SVM classifier by the precision. This 
figure is one of the keys to understanding the under- and overfitting trade-off, thus defining the CCC value for 
obtaining the maximum possible classifier’s precision without losing generalization.

Figure 13 The learning curve illustrates the proposed model’s performance improvement as it undergoes 
training over multiple epochs. This figure tracks the evolution of both accuracy and loss during the training 
process, making it easier to identify when the model begins to overfit or when further training ceases to offer 
significant performance gains.

Figure 14 compares the specificity of the proposed model over different EEG frequency bands such as delta, 
theta, alpha, beta, and gamma. To some extent, this is informative about which frequency band is dominant 
for differentiation between groups with and without schizophrenia and thus helpful for guiding further feature 
extraction.

Figure 15 illustrates the distribution of precision across various EEG datasets used in the study, highlighting 
how well the proposed model generalizes to different datasets. This figure is a benchmark for the model’s 
performance in diverse clinical settings.

The influence of feature extraction methods like MEMD and entropy computations on the sensitivity of 
the proposed model is also depicted in Fig. 16. This figure is important for decoding which methods are most 
effective in identifying as many accurate schizophrenia diagnoses as possible.

As illustrated in Fig. 17, there is a significant difference in the performance of the proposed model when 
various preprocessing techniques including artifact removal, band-pass filtering, and baseline correction are 
applied to the data signals. This figure signifies the importance of preprocessing in enhancing the model’s 
performance.

Figure 18 evaluates the real balance of the proposed model concerning diverse noise levels in the EEG data. 
This figure is useful when assessing the model’s stability and ability to generalize into real-world conditions where 
data can be noisy – a characteristic we saw in the previous section by deliberately adding noise to the dataset. 
From these results, one can conclude that the F1-Score of optimized characteristics using CAOA in cooperation 
with RST can be improved on all of the employed EEG datasets for accuracy, sensitivity, specificity, and precision. 
It improves diagnostic accuracy with fewer computational requirements, thus making the scheme feasible for 

Reference/Method Accuracy (%) Sensitivity (%) Specificity (%) Model Type
33 92.4 91.2 93.1 Deep Learning (CNN, Transformer)
34 91.7 90.5 92.0 CNN with Transfer Learning
35 89.2 88.0 90.1 Deep Learning (RNN-LSTM)
13 90.5 89.0 91.0 ML + Decomposition
36 91.0 89.8 91.7 Deep Learning (Hybrid CNN)

SVM (Baseline) 88.9 86.1 90.6 Classical ML

RF(Baseline) 91.3 89.0 93.1 Ensemble ML

Proposed Model (CAOA-RST + MEMD + SVM) 94.9 93.9 96.4 Optimization + Feature Selection + SVM

Table 7.  Comparison of the proposed model with State-of-the-art methods in EEG-Based schizophrenia 
Detection.

 

Fig. 18.  Evaluation of Model Robustness under Different Noise Levels.
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real-time medical utilization. The examined model demonstrates satisfactory accuracy in all the studied datasets 
and, therefore, can be used, to some extent, as a diagnostic tool for the early stages of schizophrenia.

Table 7 presents a comparative analysis between the proposed CAOA-RST-based model and several recent 
state-of-the-art approaches for schizophrenia detection using EEG signals. The comparison includes key 
performance metrics—accuracy, sensitivity, and specificity—and the type of model used in each study. Our 
proposed model outperforms all listed methods, achieving the highest accuracy (94.9%), sensitivity (93.9%), and 
specificity (96.4%). This demonstrates its superior diagnostic performance while maintaining computational 
efficiency, especially compared to deep learning models that typically require extensive training data and 
resources. It also highlights the effectiveness of integrating CAOA and RST with entropy-based feature extraction 
and SVM classification.

Code availability
The source code used in this study is openly available on GitHub at [GitHub Repository Link]. A permanent 
archive with a DOI has been created via Zenodo and can be accessed at [DOI Link].

Discussion
This study presents a novel and efficient framework for schizophrenia detection using multichannel EEG data, 
integrating the CAOA with RST for optimal feature selection. Our approach addresses key challenges in EEG-
based diagnostics, namely the high dimensionality, noise, and computational inefficiency of existing models. The 
experimental results demonstrate that the proposed model outperforms conventional classifiers such as SVM and 
RF across multiple EEG datasets in terms of accuracy (94.9%), sensitivity (93.9%), specificity (96.4%), precision 
(92.7%), and F1-score (93.3%). These results reflect the model’s ability to achieve high diagnostic accuracy while 
maintaining a balanced performance between identifying true positive and true negative cases. Compared to 
recent studies utilizing deep learning architectures and effective connectivity analysis1–3, our method offers 
competitive accuracy with significantly lower computational complexity and training requirements. Deep 
models, although powerful, typically rely on large labeled datasets and high-performance hardware, which can 
limit their application in real-time clinical environments. In contrast, our model achieves high performance with 
interpretable and lightweight components, making it more suitable for practical use in clinical decision support 
systems. Integrating MEMD and entropy-based feature extraction enables the model to effectively capture the 
frequency dynamics and complexity of EEG signals, which are crucial in differentiating schizophrenic brain 
activity. Additionally, the CAOA-RST combination reduces redundancy in features while preserving the most 
informative attributes, enhancing both the efficiency and generalizability of the classifier. However, the study is 
not without limitations. The datasets used, though real-world and publicly available, may not fully capture the 
diversity seen in broader clinical populations. Moreover, external validation on independent, heterogeneous 
datasets would further support the model’s robustness. Future work will explore more extensive and varied 
datasets, include additional patient demographics, and investigate hybrid deep-learning integrations to enhance 
adaptability. The proposed model delivers a practical and effective solution for early schizophrenia detection. 
Its accuracy, efficiency, and interpretability balance support its potential integration into clinical workflows and 
real-time diagnostic tools.

Conclusion and future work
Herein, we propose a new approach for schizophrenic detection and diagnosis based on the multichannel EEG 
data using feature selection and RST. It is a four-stage model. In the first stage, Raw EGG data is collected. 
The data is passed to the next stage. The second stage is named data preprocessing. This is used for artifact 
removal, band-pass filtering, and data normalization. The preprocessed data passed to the next stage. In the 
feature extraction stage, feature selection is performed using CAOA. In addition, the classification is performed 
using an SVM, MEMF, and finally, the classification is performed using entropy. The data interpretation stage 
displays the results to the end user using the data interpretation stage. We experimented and tested our proposed 
model using real EEG datasets. The simulation results prove that the proposed model achieved an average 
accuracy of 94.9%, sensitivity of 93.9%, specificity of 96.4%, and precision of 92.7%. The experiments proved 
that the proposed model has higher accuracy, sensitivity, specificity, and performance than the conventional 
approaches. Furthermore, the proposed model provides a foundation for an effective solution to the problems 
of high dimensionality and computational complexity of EEG data, which is vital for the early and accurate 
diagnosis of schizophrenia – the basis for timely treatment and recovery of patients. The proposed approach 
was developed to detect schizophrenia more accurately and efficiently using feature selection and improved 
classification techniques. Based on the analysis of given data, CAOA and RST helped reduce the input features, 
making the model more generic and less computational for different datasets. However, the study also revealed 
some limitations in the datasets used and the need for more replication of the outcomes in other clinical 
contexts. Future research could collect data from more patients, particularly patients of different ages, genders, 
and diseases, to assert the external validity of the findings. Moreover, the study may decide on employing more 
complex forms of the applied ML process and optimizers in the model. Last but not least, the workflow of the 
presented approach should reach the stage at which it can be incorporated into a clinician’s workflow to facilitate 
diagnosing schizophrenia or even other neurological disorders.

Data availability
Data is provided within the manuscript.
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