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 A B S T R A C T

Accurate solar and photovoltaic (PV) power forecasting is essential for optimizing grid integration, managing 
energy storage, and maximizing the efficiency of solar power systems. Deep learning (DL) models have shown 
promise in this area due to their ability to learn complex, non-linear relationships within large datasets. This 
study presents a systematic literature review (SLR) of deep learning applications for solar PV forecasting, 
addressing a gap in the existing literature, which often focuses on traditional ML or broader renewable 
energy applications. This review specifically aims to identify the DL architectures employed, preprocessing and 
feature engineering techniques used, the input features leveraged, evaluation metrics applied, and the persistent 
challenges in this field. Through a rigorous analysis of 26 selected papers from an initial set of 155 articles 
retrieved from the Web of Science database, we found that Long Short-Term Memory (LSTM) networks were the 
most frequently used algorithm (appearing in 32.69% of the papers), closely followed by Convolutional Neural 
Networks (CNNs) at 28.85%. Furthermore, Wavelet Transform (WT) was found to be the most prominent data 
decomposition technique, while Pearson Correlation was the most used for feature selection. We also found that 
ambient temperature, pressure, and humidity are the most common input features. Our systematic evaluation 
provides critical insights into state-of-the-art DL-based solar forecasting and identifies key areas for upcoming 
research. Future research should prioritize the development of more robust and interpretable models, as well 
as explore the integration of multi-source data to further enhance forecasting accuracy. Such advancements 
are crucial for the effective integration of solar energy into future power grids.
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1. Introduction

Precise and reliable prediction of solar photovoltaic (PV) power 
production is a critical challenge for the effective integration of solar 
energy into modern power grids. While traditional machine learning 
(ML) methods, a subfield of artificial intelligence (AI) that has high-
lighted revolutionary potential across different industries [1–3], have 
been used for this task, they generally struggle to detect the complex, 
non-linear relationships and temporal dependencies inherent in solar 
irradiance data. Deep learning (DL) algorithms, with their advanced 
abilities for handling large datasets and learning intricate patterns [4–
6], offer a promising solution, especially given their capacity to im-
prove with larger datasets [7]. However, there is a notable gap in the 
literature: a systematic understanding of the specific DL architectures, 
preprocessing techniques, and feature engineering methods that are 
most effective for solar PV forecasting. This lack of a comprehensive 
overview hinders further development and application of DL in this 
crucial area.

Renewable energy has recently seen a significant increase. The 
amount of electricity generated globally using variable renewable en-
ergy sources (VRE), a subset of renewable energy resources (RES) that 
includes solar photovoltaics (PV) and wind, raised from 1.857 TWh 
to 32 TWh between 2000 and 2019 [8]. By the end of 2030, hydro, 
solar, bioenergy, and wind energy will account for about 40% of the 
world’s power supply, based on the 2020 report from the International 
Energy Agency (IEA) [9]. The fast evolution of RES in recent years 
has created significant issues for energy system management. Power 
systems must quickly change to make accessible this new mix of energy 
generation. Since most RES depend on solar irradiation or wind speed, 
it is challenging to anticipate their power generation due to their fluc-
tuation and intermittency. Because of these characteristics, maintaining 
the normal operation and reliability of power systems demands more 
flexibility, which makes administration and maintenance more diffi-
cult [10]. Particularly solar PV as one of the most crucial RES, that the 
yearly solar energy incident on the earth’s surface is roughly 1.5 × 1018 
kW h/year, or 10,000 times larger than the world’s actual annual 
electricity usage [11]. Risks resulting from PV power’s unpredictable 
nature rise in line with solar PV capacity increase. Such dangers might 
be reduced by energy storage, but the costs of installation and main-
tenance are high. Nonetheless, solar irradiance prediction provides a 
quick, low-cost fix that works well for microgrid operation optimization 
issues including peak shaving, reducing the effect of uncertainty, and 
solving the power system’s economic dispatch issue [12].

Many PV power forecasting techniques have been established; these 
methods may be categorized into four groups according to the pre-
diction horizon [13]: very short-term, short-time ‘‘48–72 h ahead of 
time’’, medium-term, and long-term. Applications for each category 
include microgrid management, PV system control, and power market 
management. Every forecasting horizon has a particular application. 
For instance, Medium and long-term horizons are utilized for PV plant 
maintenance and planning, whereas short-term horizons are used for 
unit commitment, economic dispatch, and power system operations. 
One-step-ahead and multi-step-ahead forecasters appear in another 
classification; the latter are more often used. Whereas the multi-input 
multi-output method, the recursive approach, and the direct approach 
are the three primary methods for multi-step forecasting [14].

The accuracy of forecasters’ predictions of PV plant power genera-
tion depends on several elements [15], including time-horizon, meteo-
rological conditions, geographic location, and data accessibility. These 
2 
factors may be utilized to select different forecasters, for instance, 
satellite pictures [16] can be used for local models, and numerical 
weather prediction (NWP) models [17,18] for physical methods. While 
NWP models are frequently employed to predict weather conditions up 
to 15 days ahead [19], their use is challenging because of the pricey 
equipment required and the unavailability of early-hours forecasts. For 
predicting short-term future up to a day ahead, statistical and proba-
bilistic techniques such regression models [20], exponential smoothing, 
autoregressive models, ARIMA [21], time series ensemble [22], and 
probabilistic methods [23–25] are appropriate. Additionally, advanced 
techniques based on ML and AI [26], such as support vector machines 
(SVM), k nearest neighbor (kNN), extreme learning machine (ELM), and 
artificial neural networks (ANNs), are employed for short-term appli-
cations [27]. High forecasting accuracy may be achieved by combin-
ing sophisticated techniques with physical or statistical methodologies 
through hybrid systems [28,29]. On the other hand, DL models [30] 
present the potential to outperform the statistical models and the 
ML-based algorithms due to their capacity to handle sequential or 
time-series data which is the fundamental basis for solar forecasting. 
The successful application of advanced DL techniques in other areas 
of power systems highlights the potential for similar advancements in 
solar forecasting. These methods are gaining popularity in domains 
such as power plant control and optimization due to their ability to 
handle complex, non-linear, and time-varying data. By presenting a 
deep reinforcement learning-based framework for dynamic combustion 
optimization in a pulverized coal boiler, combining wall temperature 
limitations, [31] demonstrates the promise of reinforcement learning 
in difficult control issues. For instance, [32] proposes a prediction 
model for NOx emissions in flexible power generation that makes use 
of a channel equalization convolutional neural network, a complex DL 
architecture designed to manage time-varying delays. These examples 
demonstrate the effectiveness of DL in resolving significant problems 
in traditional power systems. These advancements greatly increase the 
appeal of the potential of state-of-the-art DL techniques to enhance 
the accuracy and robustness of solar PV forecasting. Specifically, the 
ability of advanced DL architectures to learn from complex, non-linear, 
time-series data, is crucial for addressing the challenges of intermittent 
and variable renewable energy generation. Moreover, DL’s role in 
optimizing energy systems extends beyond single-source forecasting. 
For example, [33] examines the optimal operational strategy of a 
hybrid PV/wind renewable energy system using HOMER, demonstrat-
ing the importance of integrated modeling approaches for renewable 
energy management. This paper, however, focuses on system design 
and control strategies, lacking a deep dive into advanced DL techniques 
for individual resource forecasting, which is a critical component in 
this type of work. Although the use of DL continues to increase in 
various sectors, some studies focus on its utility in other domains, such 
as network security. For example, [34] presents a network intrusion 
detection system using a hybrid multilayer deep learning model; this 
highlights the broad application of DL and the need for specialized 
DL models tailored for the complexities of power system forecasting. 
Existing reviews of DL in renewable energy systems often focus on 
the broader application of machine learning (ML) in solar forecasting, 
or the general use of DL in VRE integration, but do not provide a 
comprehensive systematic analysis of specific DL techniques for solar 
PV forecasting. This highlights a gap that our work aims to fill, by 
conducting a systematic review that concentrates specifically on the 
application of deep learning methodologies for solar PV forecasting, 
using a rigorous and objective approach.
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A systematic literature review (SLR) was carried out to understand 
the impact of deep learning on solar photovoltaic forecasts. Conducting 
an SLR is crucial as it may serve as a beneficial foundation for future 
research endeavors [35]. SLR identifies research gaps and guides future 
studies using papers retrieved and combined from electronic databases 
following an objective and transparent methodology to address well-
defined research questions [36]. SLR studies generate new insights and 
help novice researchers grasp the state-of-the-art in the research area. 
Therefore, the current study aims to survey DL architectures applied to 
solar PV forecasting, evaluate their performance, and discuss their use 
from various aspects.

This SLR addresses the limitations of previous reviews by giving a 
comprehensive and detailed analysis of DL approaches specifically for 
solar PV forecasting. Unlike [37], which primarily focused on tradi-
tional ML algorithms, this work offers an in-depth evaluation of various 
deep learning architectures, including CNNs, RNNs, and their hybrid 
combinations. Furthermore, unlike [38], which centered on ANNs, this 
SLR examines the role of feature engineering and data preprocessing 
techniques (data clustering, data augmentation, and data decompo-
sition), showcasing the importance of Wavelet Transform for data 
decomposition, K-means for data clustering, and GANs for data aug-
mentation. Finally, this review identifies and discusses the challenges 
linked to the generalization, interpretability, and operating efficiency 
of DL models, GIVING valuable guidance for upcoming research in 
this domain. This systematic approach, using the Kitchenham method-
ology [36], guarantees an objective and rigorous analysis, resulting 
in a comprehensive understanding of the state-of-the-art and future 
directions of deep learning in solar PV forecasting.

The rest of the document is structured as follows. Section 2 gives an 
explanation of the relevant works and the study’s motivation. Section 3 
discusses the process. In Section 4, the SLR findings are displayed. 
Section 5 describes the deep learning methodology and preprocessing 
methods used in solar photovoltaic forecasts. Section 6 provides the 
discussion, while Section 7 ends the study.

2. Related works and motivation

The effective use of solar energy and its smooth integration into 
the electrical grid depends heavily on solar forecasting. Predicting 
future solar photovoltaic (PV) system output entails taking into account 
several variables, including weather, solar irradiance, cloud cover, and 
other environmental elements. The reliability and cost-effectiveness of 
solar power are eventually enhanced by accurate solar forecasting, 
which makes it possible to manage energy generation, grid stability, 
and energy trading effectively.

DL, a subfield of ML, holds the potential for enhancing the accuracy 
of solar forecasting. Because it can automatically recognize hierarchical 
representations of data, it can capture complex patterns and correla-
tions that traditional modeling methods would miss. DL algorithms 
handle tremendous amounts of data, nonlinear correlations, and tempo-
ral dependencies that come with weather and solar irradiance patterns 
in the context of solar forecasting.

There have been reviews on topics pertaining to solar photovoltaic 
power generation forecasting. Some literature reviews have addressed 
all well-known forecasting approaches, including physical, statistical, 
and AI-based models. Iheanetu reviews the advancements in solar PV 
power forecasting methods, focusing on data-driven processes [39]. The 
findings indicate that each model has its advantages and disadvantages, 
and AI and ML methods are growingly being employed to forecast solar 
PV output power because of their accuracy and learning abilities from 
new historical data. The author anticipates that AI and big data will 
keep improving solar PV output energy prediction. An extensive analy-
sis of advancements in the area of forecasting solar photovoltaic power 
is conducted by Sobri et al. [40]. Their goal is to examine and contrast 
different approaches to solar photovoltaic power prediction with re-
spect to their features and efficacy. Their results are largely in line with 
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the previous review, and they also note that ensemble methods were 
created by researchers in order to better forecast model performances 
by identifying the distinctive qualities of individual models. In contrast 
to using separate models, this combination yields accurate results. In 
the same context, Sudharshan et al. reviewed a variety of models for 
estimating solar power and irradiance [41] and came to the conclusion 
that hybrid and ensemble models offered better predictions with a time 
horizon of minutes to many days.

Several reviews have examined the application of ML and ANNs to 
solar forecasting. Basaran et al. [37] delivered a broad overview of ML 
algorithms, but their work predates the widespread adoption of deep 
learning techniques, thus failing to analyze the performance of deep 
neural networks such as CNNs and (RNNs). Qazi et al. [38] focused 
specifically on artificial neural networks (ANNs), particularly multi-
layer perceptrons (MLPs), neglecting recent advancements in RNNs and 
CNNs, which have shown promise in capturing temporal and spatial 
dependencies in solar data. Klaiber and van Dinther [42] examined 
the broader implications of deep learning in variable VRE systems, 
including solar, wind, and hydro, but lacked a detailed analysis of 
the specific DL architectures, features, and evaluation metrics used 
in the narrower field of solar PV forecasting. These reviews also fail 
to discuss data augmentation and data clustering, which is important 
for solar forecasting. In particular, none of the mentioned research 
provides a comprehensive and systematic evaluation of these aspects, 
leading to an incomplete and inconsistent insight into the application 
of deep learning in solar PV forecasting. Other reviews focused just 
on the adoption of AI-based methodologies for solar forecasting. For 
instance, Wang et al. conducted a taxonomy analysis of the current 
AI-based solar power forecasting techniques [43]. They also discussed 
the difficulties and possible avenues for future research in this area. 
With a particular focus on ML, DL, and hybrid models, Mellit et al. 
seeks to offer a comprehensive and analytical analysis of the most 
recent uses of AI approaches applied to Photovoltaic Output Power 
Forecasting [44]. They conclude that even though there has been an 
extensive study on the design of forecasters based on ML, they observed 
there has not been much done with deep learning to estimate PV power 
thus far. Therefore a few reviews have been done on examining the 
employment of DL algorithms for solar power prediction. Thus, the 
review [45] by Rial et al. focused on convolutional neural network-
LSTM (CNN–LSTM), long short-term memory (LSTM), gated recurrent 
unit (GRU), and recurrent neural network (RNN) as DL algorithms for 
processing time-series data to estimate solar radiation and photovoltaic 
(PV) power. While these studies provide valuable insights, it is also 
essential to consider the specific research being conducted within the 
local context. For example, a comparative study by Ledmaoui et al. [46] 
evaluated various ML algorithms for forecasting solar energy produc-
tion in Morocco. This research provides a useful local perspective and 
highlights the practical importance of accurate solar forecasting in the 
Moroccan energy sector. Although their study focuses on traditional 
ML rather than deep learning, it offers a valuable benchmark and 
underscores the growing body of work in this critical area.

It is important to remember that these papers are all narrative re-
views, which may be more susceptible to bias and lack methodological 
rigor. A systematic review about the exclusive use of DL algorithms in 
solar forecasting does not exist in the literature, therefore there are sys-
tematic reviews that either focus on ML and ANNs for solar forecasting 
or the use of DL models for VRE in general. And that is the motivation 
for conducting this systematic and comprehensive literature review, 
focusing on the employment of DL approaches for solar photovoltaic 
forecasting. A brief comparison is provided here. Table  1 provides a 
comprehensive comparison between our and previous SLR.

We acknowledge that solar PV power prediction is a well-estab
lished research area with numerous existing studies. While various 
narrative reviews have explored PV forecasting methods, including 
those based on traditional ML and AI, this paper fills a critical gap 
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Table 1
Related work vs. current study.
 Ref. Review type Database Time span Dataset Research questions Key findings
 [37] Systematic 

review
Scopus 2010–2020 49 RQ1 categorizes studies based on PV cell 

materials, standalone and grid-connected 
systems, and considers installation 
methods (ground-mounted or rooftop) 
and location. RQ2 looks at datasets from 
the evaluated research, covering things 
like wind speed, cloud cover, solar 
irradiance, and numerical weather 
forecasting. RQ3 identifies forecasting 
approaches in SLR studies, focusing on 
ML approaches due to insufficient 
statistical methods for complex sample 
feature relationships.

Polycrystalline PV panel technologies are 
the primary focus of studies due to their 
cost-effectiveness and wider light 
spectrum operation. Current forecasting 
methods use factors like historical power 
data, temperature, relative humidity, 
solar radiation, daytime duration, and 
cloud coverage to predict power. Some 
feature selection is used to determine 
forecasting accuracy. Most PV power 
forecasting studies use direct approaches, 
with machine learning methods like the 
k nearest neighbor, Support Vector 
Machine, random forest, and artificial 
neural network. Hybrid approaches 
combine multiple prediction models for 
more accurate forecasting results.

 

 [38] Systematic 
review

ACM, IEEE, 
ScienceDirect, 
Springer, Wiley, and 
ISI web of 
knowledge

2006–2013 24 RQ1: Which solar energy forecast 
methods are scholars focusing on, and 
how are their studies divided among 
these methods? RQ2: What is the 
field-level effectiveness of ANN 
modeling?

ANN models are highly accurate in 
predicting solar radiation in various 
climatic conditions due to their ability 
to accept multiple input parameters. 
This makes them more reliable than 
empirical models and makes them more 
demanding in renewable energy resource 
prediction, such as solar radiation 
predication and solar system design. 
Adaptive neuro-fuzzy inference systems, 
neural networks, and multilayer 
perceptrons enhance prediction accuracy 
in monthly and hourly solar radiation 
predictions. ANN models outperform 
statistical, conventional, linear, 
non-linear, and fuzzy logic models.

 

 [47] Systematic 
review

Web of Science, 
Science Direct, IEEE 
and Google Scholar

2013–2017 38 RQ1: Where, why, and by whom have 
researches been conducted? RQ2: What 
role do machine learning models play in 
addressing the forecasting issue? RQ3: 
What sort of data is being utilized? 
RQ4: How does the global adoption of 
renewable energy relate to predicting 
knowledge development?

A study of 38 papers published by 134 
researchers on solar power forecasting 
reveals that the majority of these papers 
focus on computer science, information 
technology, and knowledge engineering. 
The study also highlights the potential of 
machine learning algorithms like ELM, 
ANN, and SVM to improve forecasting 
accuracy. However, less than 20% of the 
papers used electricity-related data for 
solar power forecasting and there was a 
lack of focus on data quality initiatives. 
The majority of the papers focused on 
solar radiation, with 73% combining 
solar irradiance data with meteorological 
data parameters. Most papers used 
machine learning algorithms, with data 
collected ranging from 5 to 15 years. 
Further research is needed to improve 
forecasting accuracy and address data 
quality issues in this sector.

 

 [42] Systematic 
review

Web of Science 1990–2019 136 How can DL be used to approach VRE 
integration difficulties as a solution 
facilitator and speed up its widespread 
integration in electrical systems?

Solution I: By improving solar and wind 
power forecasts, DL can reduce the 
uncertainty around the generation of 
VREs. Subsequent solution attempts are 
frequently based on advanced 
DL-forecasting models. Solution II: To 
improve the flexibility of electrical 
systems, DL can help with system 
scheduling, optimize it, and enable 
real-time grid management. Solution III: 
To maintain grid security and boost the 
effectiveness and dependability of VRE 
sources, DL can enhance intelligent 
condition monitoring.

 

 (continued on next page)
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Table 1 (continued).
 Ref. Review type Database Time span Dataset Research questions Key findings
 This Study Systematic 

review
Web of Science 2015–2024 155 RQ1: Which deep learning techniques 

have been applied to solar forecasting in 
the literature?; RQ2: what different data 
preprocessing techniques and feature 
engineering approaches are used with 
DL algorithms for solar forecasting in 
literature?; RQ3: Which features have 
been employed in DL-based solar 
forecasting in the literature?; RQ4: 
Which evaluation metrics and 
approaches have been employed in solar 
forecasting in the literature?; RQ5: What 
are the obstacles in deep learning-based 
solar forecasting?

The finding mentioned that LSTM and 
CNN, and their combination the most 
used algorithms for solar forecasting. 
The Pearson correlation, Wavelet 
Transform, K-Means, and Generative 
Adversarial Networks are the most 
feature engineering techniques used. 
Ambient Temperature, Pressure, and 
humidity are the most input features 
used.

 

by providing a systematic review focused exclusively on the appli-
cation of deep learning techniques for solar PV forecasting. Existing 
systematic reviews in this area often focus on traditional ML [37,
38] or broader variable renewable energy (VRE) applications using 
DL [42] but lack an in-depth analysis of DL’s specific role in solar PV 
forecasting. Furthermore, other reviews that tackle DL algorithms, are 
narrative reviews [45], with potential bias and lack methodological 
rigor, so our paper aims at filling this void by rigorously analyzing the 
employment of DL techniques in solar PV forecasting, employing the 
well-known Kitchenham SLR methodology, thus setting the ground for 
deep analysis.

The main contributions of this work lie in its systematic and com-
prehensive evaluation of DL-based solar PV power forecasting, a spe-
cific focus not previously addressed in existing literature reviews. This 
specialization distinguishes it from previous reviews that are either 
narrative [42], focus on ML broadly [37], center on ANNs [38], or 
examine deep learning’s implications within the wider context of gen-
eral VRE applications [47]. Specifically, Basaran et al. [37] provide a 
wide-ranging overview of ML algorithms, but their research predates 
the surge in deep learning adoption, leading to a lack of analysis con-
cerning deep neural network performance in solar forecasting. While 
Qazi et al. [38] concentrate primarily on ANNs, they omit discus-
sion regarding the rise of RNNs and CNNs, which have demonstrated 
promise in capturing temporal and spatial dependencies in solar data. 
Similarly, although Klaiber and van Dinther [47] offer insights into 
DL within VRE systems, their analysis lacks a detailed examination 
of the specific DL architectures, feature engineering techniques, and 
evaluation metrics applied within the narrower domain of solar pho-
tovoltaic (PV) forecasting. Furthermore, these existing reviews offer 
only a limited overview of the data pre-processing techniques. Using 
the well-known Kitchenham protocol [36], our systematic approach 
ensures an objective and rigorous analysis of the chosen research 
domain. We identify and analyze the various DL architectures applied 
(RQ1), systematically categorize and evaluate the diverse feature engi-
neering and data pre-processing techniques employed (RQ2), outline 
the commonly used features for DL-based solar forecasting (RQ3), 
assess the evaluation metrics (RQ4), and address the challenges and 
opportunities for future research in this field (RQ5). Specifically, our 
review reveals the most common DL models, such as LSTM and CNN, 
and their hybrid combinations. It also identifies key pre-processing 
techniques such as Wavelet Transform, K-Means, and GAN and their 
variants, and highlights the frequently used features like temperature, 
pressure, and humidity. Furthermore, our discussion of the challenges 
and opportunities for future research (RQ5) provides valuable guidance 
for researchers and practitioners working in this area. By offering a 
systematic, comprehensive, and focused examination of deep learning 
for solar photovoltaic power forecasting, this research contributes to 
a clearer understanding of the state-of-the-art and offers a rigorous 
foundation for future development in this field.
5 
3. Research methodology

3.1. Protocol

Prior to conducting the SLR, a review protocol is developed. The 
review was conducted following Kitchenham’s well-known review pro-
cess [36]. The research questions are first formulated. Once research 
questions are established, pertinent studies are chosen using databases. 
Web of Science is the database that was employed for this investigation 
due to its comprehensive and highly reputable index of scholarly 
publications, covering a vast range of disciplines, which is particularly 
valuable for systematic reviews requiring broad coverage. Furthermore, 
its sophisticated search functionality and citation analysis tools facili-
tate efficient and precise identification of relevant research literature. 
Following the selection of pertinent research through applying a series 
of quality and exclusion criteria-based filters and assessments. In order 
to address the research issues, the pertinent data from the chosen 
studies were eventually retrieved and synthesized. Three components 
comprise our methodology: planning, conducting, and reporting as 
illustrated in Fig.  1.

The review’s planning phase is the initial step. Research questions 
are determined at this stage, followed by the development of a pro-
cedure and, ultimately, its validation to determine the feasibility of 
the approach. Along with the research topics, article venues, primary 
searching words, and paper selection criteria are developed. Once all 
of that information has been defined, the procedure is reviewed again 
to determine whether it reflects an appropriate review procedure.

Carrying out the review is the second step. By searching within all of 
the chosen records, the included papers were chosen at this point. After 
the data was gathered, additional information about the research topics 
as well as details about the authors, year and kind of publication, and 
other aspects of the data were saved. After obtaining all the necessary 
data precisely, the data was aggregated to offer an overview of the 
relevant studies that have been published to date.

Recording the results and answering the research questions were the 
final steps in the evaluation process.

3.2. Research questions

The purpose of this SLR is to gather information about released 
research in the domain of DL and solar photovoltaic forecasting. Papers 
have been examined from a variety of angles to gain knowledge about 
the area of interest. For this SLR study, the five research questions (RQs) 
listed below have been developed.

• RQ1: Which DL models have been applied to solar forecasting in 
the literature?;

• RQ2: what different data preprocessing techniques and feature 
engineering approaches are used with DL algorithms for solar 
forecasting in literature?;
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Fig. 1. The research methodology.
Table 2
Search query applied to topic fields.
 Search query Papers extracted  
 (‘‘Data Augmentation’’ OR ‘‘data processing’’ OR ‘‘feature extraction’’ OR ‘‘Data Preprocessing’’ OR ‘‘Data Mining’’ OR ‘‘Data Analysis’’ 
OR ‘‘Data Clustering’’ OR ‘‘Feature Engineering’’ OR ‘‘Wavelet Transform’’ OR ‘‘Statistical Features’’ OR ‘‘Feature Selection’’) AND 
(‘‘Neural Networks’’ OR ‘‘ Deep Neural Networks’’ OR ‘‘Deep Learning Models’’ OR ‘‘Convolutional Neural Networks’’ OR ‘‘Recurrent 
Neural Networks’’ OR ‘‘Long Short-Term Memory’’ OR ‘‘Gated Recurrent Unit’’ OR ‘‘Autoencoders’’ OR ‘‘Stacked AutoEncoder’’ OR 
‘‘Generative Adversarial Networks’’ OR ‘‘Transfer Learning’’ OR ‘‘Feedforward Neural Network’’ OR ‘‘Deep Reinforcement Learning’’ OR 
‘‘Variational Autoencoder’’ OR ‘‘Generative Adversarial Network’’ OR ‘‘Deep Belief Network’’ OR ‘‘Radial Basis Function Network’’ OR 
‘‘Hopfield Network’’ OR ‘‘Artificial Neural Network’’ OR ‘‘Reinforcement Learning’’ OR ‘‘Multilayer Perceptron’’ OR ‘‘Residual Network’’ 
OR ‘‘Capsule Networks’’ OR ‘‘Deep Boltzmann Machines’’ OR ‘‘DL’’ OR ‘‘FNN’’ OR ‘‘MLP’’ OR ‘‘CNN’’ OR ‘‘RNN’’ OR ‘‘LSTM’’ OR ‘‘GRU’’ 
OR ‘‘VAE’’ OR ‘‘GAN’’ OR ‘‘DBN’’ OR ‘‘RBFN’’ OR ‘‘ANN’’ OR ‘‘SAE’’) AND (‘‘solar forecasting’’ OR ‘‘Solar Energy Forecasting’’ OR ‘‘Solar 
power Forecasting’’ OR ‘‘Solar radiation Forecasting’’ OR ‘‘solar irradiation forecasting’’ OR ‘‘solar output forecasting’’ OR ‘‘Photovoltaic 
Forecasting’’ OR ‘‘Photovoltaic energy Forecasting’’ OR ‘‘Photovoltaic power Forecasting’’ OR ‘‘Photovoltaic output Forecasting’’ OR ‘‘PV 
forecasting’’ OR ‘‘PV energy Forecasting’’ OR ‘‘PV power Forecasting’’ OR ‘‘PV output Forecasting’’)

preliminary research query.
(155 papers)

 

 (‘‘Data Augmentation’’ or ‘‘data processing’’ or ‘‘feature extraction’’ or ‘‘Data Preprocessing’’ or ‘‘Data Mining’’ or ‘‘Data Analysis’’ or 
‘‘Data Clustering’’ or ‘‘Statistical Features’’ or ‘‘Wavelet Transform’’ or ‘‘Feature Selection’’) and (‘‘Neural Networks’’ or ‘‘Deep Learning 
Models’’ or ‘‘Convolutional Neural Network’’ or ‘‘Long Short Term Memory’’ or ‘‘Generative Adversarial Networks’’ or ‘‘Generative 
Adversarial Network’’ or ‘‘Deep Belief Network’’ or ‘‘Reinforcement Learning’’ or ‘‘Artificial Neural Network’’ or ‘‘Multilayer Perceptron’’ 
or ‘‘DL’’ or ‘‘LSTM’’ or ‘‘ANN’’) and (‘‘solar forecasting’’ or ‘‘Solar Energy Forecasting’’ or ‘‘Solar power Forecasting’’ or ‘‘Solar radiation 
Forecasting’’ or ‘‘solar irradiation forecasting’’ or ‘‘solar output forecasting’’ or ‘‘Photovoltaic power Forecasting’’ or ‘‘PV forecasting’’ or 
‘‘PV power Forecasting’’ or ‘‘PV output Forecasting’’)

After pilot test query 
(155 papers.)

 

• RQ3: Which features have been employed in DL-based solar fore-
casting in the literature? ;

• RQ4: Which evaluation metrics and approaches have been em-
ployed in solar forecasting in the literature? ;

• RQ5: What are the obstacles in deep learning-based solar forecast-
ing?

3.3. Search strategy

The search is carried out by establishing all the possible keywords 
related to the two fields of interest, deep learning and solar photo-
voltaic forecasting, and their synonyms and acronyms, then a set of 
keywords was added pertaining to the data processing and feature 
engineering techniques to keep in line with the scope of the study, and 
to highlight the relevant studies to the previous mentioned research 
questions. The resulting search string is illustrated in Table  2:

After many pilot tests and the elimination of terms that did not have 
an impact on the number of generated papers, the final selection after 
applying this search string on the author keywords, abstract, title, and 
Keywords Plus attributes was 155 papers. The search execution was on 
13th June 2024.

3.4. Inclusion and exclusion criteria

Considering the inclusion and exclusion criteria, the papers were 
evaluated and graded in order to capture the limits of the SLR and 
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Table 3
Search query applied to topic fields.
 Inclusion criteria Exclusion criteria  
 Paper published between 2015 
and 2024

Paper is a review or survey study  

 Paper written in English Paper is a conference proceeding article 
 Paper is a research article Paper without abstract  

exclude irrelevant research. Table  3 lists all the inclusion and exclusion 
criteria used.

After the application of the exclusion and inclusion criteria, only 
121 papers remained for further quality evaluation. To refine the search 
results by focusing on articles where the terms are closely related 
conceptually, rather than simply appearing in the same document, the 
proximity operator NEAR/50 was applied. The paper’s number was 
reduced to 28, and after the abstract screening and full-text availability 
check, the final number of papers was 26, forming the extracted and 
synthesized data to answer the research questions. Fig.  2 demonstrates 
the selection process.

4. Results

To more thoroughly assess the state of deep learning in solar fore-
casting currently. The amount of studies released annually over the 
previous ten years is displayed in Fig.  3. This graph shows that there 
have been more articles published on solar power forecasts recently. 
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Fig. 2. The procedure for selecting studies.
Fig. 3. Annual distribution of selected publications.
This enormous increase in research on deep learning in solar forecasting 
indicates a considerably higher level of interest in the topic. In 2015 
and 2016, there were no studies on deep learning in solar forecasting 
because of the inclusion and exclusion criteria of this study.

Table  4 displays the selected publications where publication year, 
title, and algorithms employed are shown. DL models were reviewed 
and summarized in order to respond to the initial research question 
(RQ1). Table  5 enumerates the often-utilized models. The two most 
commonly utilized algorithms are LSTM and CNN, followed by ANN as 
the table illustrates. Additionally, Table  5 shows that RNN and GRU are 
frequently utilized. Finally, deep neural networks (DNN), and Elman 
neural network (ELM) come last with one occurrence time. Note that 
the algorithm can be used either as a proposed model or as a benchmark 
and that it can be utilized as a standalone model or integrated into 
a hybrid model. For instance, several studies [51,63] used LSTM for 
short-term photovoltaic power prediction, others such [65] used LTSM 
for one day a head solar power forecasting, while others like [72] used 
CNN to extract features from sky images for solar radiation forecasting. 
These are common applications of deep learning for solar energy.

Fig.  4 illustrates all the hybrid models used and enhanced variants 
of the basis models. The most common hybrid model used is CNN-LSTM 
with 5 times of occurrences followed by CNN-GRU with 2 times of 
occurrences. All the other hybrid and enhanced models ‘‘Deep CNN 
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(DCNN), Dilated CNN (DCNN*), Quad-kernel Deep CNN (QK-CNN), 
BiLSTM, Autoencoder (AE) combined LSTM (AE-LSTM), DNN, Gener-
alized Neural Network (GNN), Dilated CNN combined with BILSTM 
(DCNN-BILSTM), Convolutional Neural Network combined with BIL-
STM (CNN-BILSTM), CNN integrated with LSTM (CNN-LSTM), LSTM 
integrated with a CNN (LSTM-CNN), CNN integrated with GRU (CNN-
GRU), GRU integrated with a CNN (GRU-CNN), ELM integrated with 
LSTM (ELM-LSTM), RNN combined with LSTM (RNN-LSTM)’’ were 
used once. In addition a set of popular convolutional neural net-
work (CNN) architectures like ResNet, DenseNet, AlexNet, GoogLeNet, 
ShuffleNet SqueezeNet was used one time.

The quantitative analysis of the deep learning algorithms based 
on their performance evaluation metrics across our selected publica-
tions, indicates a number of trends. For example, in [48], the authors 
investigated nine ensemble models for solar radiation forecasting in 
seven Indian cities, finding that VMD-integrated GRU generally per-
formed best with the following approximate RMSE ranges: Delhi (0.82), 
Chennai (0.83), Hyderabad (0.85), Nagpur (0.89), Patna (1.15), Trivan-
drum (0.95), and Bhubaneshwar (1.22). In comparison, other models 
produced varying RMSE values depending on the city and signal pro-
cessing technique used, for example, VMD-integrated LSTM exhibited 
R2 scores between (0.41 and 0.74); VMD-integrated BiLSTM had R2 
scores between (0.11 and 0.9); VMD-integrated CNN had R2 scores 
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Table 4
Selected papers.
 Ref Key Deep learning algorithm(s) used Year  
 [48] P1 Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), 

Convolutional Neural Network (CNN), Deep Neural Network (DNN), and Artificial Neural Network (ANN)
2023 

 [49] P2 Deep CNN DCNN), Back-propagation Neural Network (BPNN) 2017 
 [50] P3 Generalized Neural Network (GNN) and ANN 2017 
 [51] P4 LSTM 2021 
 [52] P5 CNN and GRU 2022 
 [53] P6 Quad-Kernel Deep Convolutional Neural Network (QK-CNN), LSTM, and Convolutional LSTM (ConvLSTM) 2022 
 [54] P7 CNN, Support Vector Regression (SVR), ANN, LSTM, and Hybrid CNN-LSTM, LSTM-CNN 2023 
 [55] P8 Hybrid CNN and Extreme Learning Machine CNN-ELM 2022 
 [56] P9 GRU, LSTM, and CNN 2023 
 [57] P10 CNN, BILSTM, hybrid CNN-BILSTM 2023 
 [58] P11 Auto-Encoder (AE), LSTM, and hybrid AE-LSTM 2020 
 [59] P12 Backpropagation Neural Networks (BPNN) and Elman Neural Networks (ENN) 2018 
 [60] P13 ANN, Extreme Learning Machine (ELM), Deep Belief Network (DBN), Restricted Boltzmann Machine (RBM), 

CNN-LSTM, CNN-GRU, LSTM-CNN, GRU-CNN
2022 

 [61] P14 ANN, CNN, LSTM, CNN-LSTM 2018 
 [62] P15 CNN(ResNet, DenseNet) and ANN 2020 
 [63] P16 LSTM, ELM, and LSTM-ELX 2023 
 [64] P17 CNN 2020 
 [65] P18 ANN, LSTM 2021 
 [66] P19 Dilated Convolutional Neural Network (DCNN), CNN, LSTM, BILSTM, and DCNN-BILSTM 2022 
 [67] P20 ANN 2017 
 [68] P21 ANN, LSTM, and CNN 2022 
 [69] P22 Feed Forward Neural Network (FFNN) ANN 2019 
 [70] P23 ANN 2020 
 [71] P24 Recurrent Neural Network (RNN), LSTM, Deep Belief Network (DBN), ANN 2018 
 [72] P25 ANN, CNN, LSTM, CNN-LSTM, CNN-ANN 2020 
 [73] P26 ANN 2020 
Fig. 4. The derived deep learning models.
Table 5
The most deep learning algorithms used.
 Deep learning algorithms Times of occurrence Percentage (%) 
 LSTM 17 32.69  
 CNN 15 28.85  
 ANN 9 17.31  
 GRU 6 11.54  
 RNN 2 3.84  
 DNN 1 1.92  
 ELM 1 1.92  
 DBN 1 1.92  

between (0.44 and 0.65); VMD-integrated DNN had R2 scores between 
(0.3 and 0.63), VMD-integrated ANN had R2 scores between (0.18 and 
0.56), and VMD-integrated SVR variants (RBF, POLY, and LINEAR) R2 
scores were generally between (0.03 to 0.48). DWT-integrated models 
had a generally lower R2 value for the same models, across all cities. 
In [53], the authors proposed a Quad-Kernel CNN (QK-CNN) model for 
intra-hour photovoltaic (PV) power forecasting, which demonstrated 
superior performance, yielding a better RMSE score of 3.11% compared 
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to LSTM (4.31%) and ConvLSTM (3.57%). Furthermore, the QK-CNN 
model consistently outperformed single-kernel CNN and CNN-LSTM 
models across different forecast horizons and data resolutions (5, 10, 
and 15 min), and was able to explain 96% to 98% of the total variation 
in the forecasted PV power. In [56], the authors explored a dual-
dimensional Time-GGAN data augmentation method for PV power 
forecasting and found that models trained on the augmented datasets 
achieved an average RMSE of 3.44%, compared to a higher average 
RMSE of 5.44% when using non-augmented datasets. Furthermore, they 
observed a 3.1% improvement in accuracy for LSTM models and a 
2.3% improvement for CNN models when using their proposed data 
augmentation technique. As we can see there is no single model that 
outperforms all of the other ones, the selection is context-specific, 
and usually hybrid models tend to outperform the basic ones and 
are becoming popular. Also, there is a direct correlation between the 
quality of the data and the model performance, so, the preprocessing 
and the feature engineering step are of significant importance, which 
is why the research is trending toward hybrid models that combine de-
composition, data clustering, data augmentation, and feature selection 
techniques.
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Fig. 5. Data preprocessing methods used.
While the following examples provide precise performance metrics, 
it is beneficial to consider each model type’s overall strengths and 
weaknesses. LSTMs excel at learning temporal dependencies and suit 
time-series forecasting where long-term trends are strong. They are 
computationally heavy, however, and may not be suitable for high-
dimensional data. CNNs are well-suited to learning spatial features 
and can be less computationally heavy than LSTMs. They are not 
necessarily superior at pulling out long-term temporal relationships, 
however. Hybrid models, such as CNN-LSTMs, attempt to combine 
the strengths of both, but their added complexity renders them more 
difficult to train and interpret. Furthermore, the model architecture 
must be chosen depending on the particular properties of the data and 
the forecast horizon. For short-term prediction, simpler models like 
CNNs or GRUs can suffice, while long-term prediction might require 
more sophisticated models like LSTMs or hybrid models. Essentially, 
the choice of the best model is always a compromise between accuracy, 
computational cost, interpretability, and the specific requirements of 
the application.

The meaning of data preprocessing and feature engineering might 
be confusing because they may refer to the same thing. Data prepro-
cessing refers to the pretreatment done to the data before gets fed 
into the models, and feature engineering refers to the techniques done 
to decompose, group, and create new features based on the original 
data. Different data preprocessing techniques and feature engineering 
approaches used with DL algorithms for solar forecasting applied in 
studies were investigated and summarized, to address research question 
two (RQ2). Table  6 and Fig.  5 display every data preprocessing method 
and feature engineering strategy we were able to extract.

As illustrated in Table  6, the most data decomposition used is 
Wavelet Transform (WT) with its two types Discrete Wavelet Transform 
(DWT) and continuous Wavelet Transform (CWT), followed by Varia-
tional mode decomposition (VMD). For data clustering K-means method 
is the most employed in our sample, followed by the Fuzzy C-means 
(FCM) algorithm. For data augmentation, GANs and their variants are 
the most suited for this purpose. Finally, the Pearson correlation and 
RReliefF Feature Selection are the most used for the feature selection 
process.

Wavelet Transform (WT) and Variational Mode Decomposition
(VMD) are great decomposition techniques used to analyze solar irra-
diance data by breaking it down into frequency components to reveal 
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Table 6
Feature engineering techniques used.
 Task Feature engineering techniques  
 

Data decomposition

Wavelet Transform (WT)  
 Variational mode decomposition (VMD)  
 Maximal Overlap Discrete Wavelet Transform 

(MODWT)
 

 Complementary ensemble empirical mode 
decomposition (CEEMD)

 

 Empirical Wavelet Transform (EWT)  
 Empirical mode decomposition (EMD)  
 Complete Ensemble Empirical Mode Decomposition 

with Adaptive Noise (CEEMDAN)
 

 
Data clustering

K-Means  
 Soft-DTW-Based K-medoids  
 Fuzzy C-means (FCM)  
 
Data augmentation

Time Generative Adversarial Networks (TimeGAN)  
 Generative Adversarial Networks (GAN)  
 Conditional Time-Series Generative Adversarial 

Networks (CTGAN)
 

 

Feature selection

PEARSON Correlation  
 RReliefF Feature Selection  
 Maximum Relevance Interaction Gain (MRIG)  
 SPEARMAN Correlation  
 Mutual information analysis  
 Principal Component Analysis (PCA)  
 XGB feature importance  
 Random forest feature importance  

underlying patterns across multiple time scales. WT is particularly 
effective for time series data with transient or non-stationary charac-
teristics, enabling the extraction of both low-frequency components 
(representing general trends) and high-frequency components (cap-
turing rapid changes), which enhances forecasting model accuracy. 
Conversely, VMD excels at handling non-linear and non-stationary sig-
nals by decomposing them into distinct intrinsic mode functions (IMFs) 
with varying frequencies. While these methods give advantages like 
detailed time–frequency analysis, suitability for non-stationary data, 
and noise reduction, they also come with limitations. WT may require 
computationally expensive parameter adjusting, and VMD requires 
predefining the number of modes, which can be challenging. These 
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techniques are particularly useful in scenarios where time series reveal 
complex characteristics, including both high-frequency fluctuations and 
long-term trends, and are often implemented for noise reduction by 
isolating and removing high-frequency components.

K-Means Clustering and Fuzzy C-Means (FCM) are unsupervised 
learning models widely employed for clustering solar radiation data 
into distinct categories. K-Means partitions data into clusters based 
on the proximity of data points to centroids, offering computational 
efficiency and straightforward implementation. In contrast, FCM allows 
data points to belong to multiple clusters, making it more suitable 
for datasets with gradual transitions between categories. Both meth-
ods stand out in identifying patterns, reducing data complexity, and 
facilitating analysis by grouping similar data points. But, they also face 
challenges. K-Means may struggle with high-dimensional data, assume 
spherical clusters, and are sensitive to initialization parameters, while 
FCM is computationally more expensive. These clustering techniques 
are great in scenarios requiring the identification of distinct patterns, 
such as differentiating between sunny and cloudy days. Generative 
Adversarial Networks (GANs) and their variants, including TimeGAN 
and CTGAN, are emerging as powerful tools for generating synthetic 
data that keep the statistical properties of original datasets. TimeGAN 
is particularly adept at capturing time-series dependencies, while CT-
GAN considers additional parameters, such as weather conditions, to 
produce robust datasets. The main advantages of GANs include over-
coming data scarcity, enhancing model generalization, and decreasing 
overfitting. However, training GANs can be computationally intensive, 
prone to bias in generated data, and challenging to optimize. These 
models are particularly useful in scenarios involving limited historical 
data, unbalanced datasets, or situations requiring synthetic yet realistic 
data to improve model performance. Pearson Correlation and ReliefF 
are widely used feature selection techniques in solar energy fore-
casting. Pearson Correlation quantifies the linear association between 
two variables, offering insight into the significance of each feature 
for model development. ReliefF, on the other hand, evaluates feature 
relevance based on how much a model’s performance is affected when 
a feature is removed. These methods are computationally efficient, easy 
to interpret, and effective in reducing dimensionality, which accelerates 
model training. However, Pearson Correlation can be highly sensitive 
to outliers, and ReliefF may struggle with highly correlated features or 
non-linear relationships. These techniques are particularly valuable in 
scenarios requiring dimensionality reduction and the identification of 
the most meaningful features for model input. In the Appendix section, 
Tables  A.10, A.11, and A.12 give more details about these techniques, 
and the papers where they appear.

The data preprocessing techniques used for most papers in our 
selection are the following:

• Data normalization is a data preprocessing method that converts 
data values to a common range, generally ranging from 0 to 1. 
This operation ensures that features with vastly different scales 
do not disproportionately impact the model’s training, improving 
the stability and efficiency of the algorithm. Normalization is 
especially advantageous when data has a wide range of values, 
such as solar irradiance data, where outliers can significantly 
impact the model’s accuracy. Common normalization methods 
include Min–Max Scaling and Max–Min Normalization, both of 
which rescale values to the desired range;

• Data standardization, on the other hand, centers data around 
zero and scales it to unit variance (standard deviation equal 1). 
This ensures that the variables are on a similar scale, preventing 
certain features from overtaking the learning process. Standard-
ization is especially helpful when the data exhibit a Gaussian 
distribution, as it helps to normalize the data’s shape. It is also 
beneficial for models that are sensitive to feature scales, such as 
linear regression and ANN. A common method for standardization 
is the Z-score, which removes the mean and divides it by the 
standard deviation;
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• Missing value imputation and handling are critical aspects of 
solar forecasting, especially when working on real-world data that 
generally have missing data points due to equipment failure or 
other factors. Common techniques include mean/median imputa-
tion, linear interpolation, K-Nearest Neighbors (KNN) imputation, 
and more sophisticated approaches like multivariate imputation 
models. Some papers specifically employ mean imputation, lin-
ear interpolation, or KNN interpolation to fill in missing values, 
while others suggest resampling or removing entire days with 
significant missing data. The kind of data, the amount of missing 
data, and the intended prediction model accuracy all influence 
the method selection. Beyond imputation, papers often emphasize 
the need for outlier detection and handling, as well as basic 
data cleaning and preparation steps prior to applying forecasting 
algorithms. eventually, handling missing values effectively is vital 
for guarantying the reliability and accuracy of solar forecasting 
models;

• Outlier detection and handling are crucial aspects of solar fore-
casting using ML and DL models. Outliers, which are unrealistic 
measurements often caused by sensor errors, system failures, or 
extreme weather events, can significantly impact model accuracy. 
Techniques used for outlier detection include statistical methods 
like the 3𝜎 rule, domain-specific filtering based on physical con-
straints, and data transformations such as log transformations. 
Additionally, visual methods like box plots and the interquartile 
range (IQR) can aid detect outliers. Once detected, outliers are 
often removed or corrected using methods like interpolation, KNN 
regression, or by leveraging the inherent outlier resistance of 
models like Support Vector Regression. Some papers specifically 
handle outlier removal by eliminating data points with zero radi-
ation intensity or those caused by system shutdowns. Advanced 
approaches utilize copula theory to model dependencies between 
variables, allowing for the detection of outliers deviating from ex-
pected connections. The choice of outlier detection and handling 
techniques depends on the specific dataset, model, and research 
objectives;

• One-hot encoding is a technique used in solar forecasting models 
to represent weather types based on the ratio of diffuse hori-
zontal radiation (DHR) and global horizontal radiation (GHR), 
classifying days as Sunny, Partially Cloudy, or Overcast/Rainy. 
Each weather kind is assigned a unique 3-bit binary code (one-hot 
vector), creating three separate feature maps for each category. 
This process is applied to both historical and day-ahead predicted 
weather data. This method provides a straightforward and inter-
pretable way to incorporate weather information into solar fore-
casting models. While simple and efficient, it may oversimplify 
the complex relationship between weather types and solar irra-
diance and neglect nuances within each category. More sophis-
ticated encoding schemes or alternative representation methods 
might be needed to ameliorate the accuracy and interpretability 
of solar forecasting algorithms;

• Solar forecasting models rely on careful data preparation to reach 
high accuracy. Data Transformation techniques like log or power 
transformations normalize skewed data distributions, improving 
model performance. Diurnal Data Extraction focuses on relevant 
daylight hours, eliminating irrelevant nighttime data and refin-
ing the model’s focus on solar generation patterns. Furthermore, 
time series data frequently undergoes transformation, such as 
aggregating 5-min resolution data into hourly averages. This 
aggregation serves also as feature engineering, reducing data 
volume and potentially highlighting larger-scale patterns. Finally, 
Data Splitting, a standard practice in ML, consists of dividing the 
data into training and testing sets (typically 80:20). This ensures 
the model learns from the training data and can generalize to 
unseen data, preventing overfitting and promoting robust predic-
tion capabilities. The creation of precise and trustworthy solar 
forecasting models is greatly aided by the combined use of these 
techniques.
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Table 7
Features used for PV power forecasting.
 Feature Number of times used 
 Ambient temperature 11  
 Humidity 10  
 Historical PV power 10  
 Global Solar irradiance 6  
 Wind speed 6  
 Global horizontal irradiance (GHI) 5  
 Diffuse horizontal radiation (DHR) 3  
 Wind direction 3  
 Rainfall 2  
 Cell temperature 2  
 Current Phase average 1  
 UV index 1  

Table 8
Features used for solar radiation forecasting.
 Feature Number of times used 
 Ambient temperature 5  
 Pressure 4  
 Wind speed 4  
 Humidity 3  
 Historical Global horizontal irradiance (GHI) 3  
 Wind direction 2  
 precipitation 1  
 Bright sunshine hours 1  

Table 9
Full evaluation metrics used.
 Key Evaluation metric Number of times used 
 RMSE Root Mean Square Error 25  
 MAE Mean Absolute Error 22  
 MAPE Mean Absolute Percentage Error 8  
 R2 Coefficient of Determination 7  
 R Correlation Coefficient 5  
 MBE Mean Bias Error 2  
 FS Forecast Skill 1  
 MSE Mean Squared Error 1  
 MSLE Mean Squared Logarithmic Error 1  
 MASE Mean Absolute Scaled Error 1  
 NIA Negative Index of Agreement 1  
 U1 Theil U-statistic 1 1  
 U2 Theil U-statistic 2 1  
 MHE Mean Huber Error 1  
 SCC Squared correlation coefficient 1  

Research question three (RQ3) was addressed by examining and 
summarizing features utilized in the deep learning algorithms used in 
the publications. Tables  7 and 8 display all of the features used for PV 
power forecasting and Solar radiation forecasting respectively that we 
were able to retrieve.

Table  8 indicates that the most frequently employed features for 
forecasting solar radiation as a ‘‘dependent variable’’ are tempera-
ture, pressure, wind speed, and humidity. Other independent variables 
that are used for forecasting solar radiation include global horizontal 
irradiance (GHI), wind direction, precipitation, and bright sunshine 
hours.

The most popular features for PV power forecasts are shown in 
Table  7. The most often used features include ambient temperature, 
humidity, historical PV power, wind direction, global horizontal radia-
tion (DHR), global solar irradiance, wind speed, and global horizontal 
irradiance (GHI). Other, less often used independent features include 
rainfall and UV index. PV power forecasting also took into account 
additional panel-related factors, such as cell temperature and current 
phase average, in addition to climatic variables.

In order to address the fourth research question (RQ4), evaluation 
metrics were determined. Table  9 lists all of the evaluation metrics that 
were used along with how often they were used.
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According to Table  9, the most frequently employed metrics in the 
papers are RMSE, MAE, MAPE, and R2. In the appendix section, Table 
A.13 provides more details about these metrics.

Table  9 shows the parameters used for the papers that deal with de-
terministic forecasting, for the other studies interested in probabilistic 
forecasting, the metrics used are the following:

• Average Coverage Error (ACE): Evaluates how well the fore-
casting quantiles, representing uncertainty, match the observed 
values;

• Interval Sharpness (IS): Assesses the sharpness of the prediction 
interval (PI), indicating the degree of uncertainty quantified by 
the model;

• Continuous Ranked Probability Score (CRPS): Provides an 
overall measure of probabilistic forecasting performance, encom-
passing both accuracy (ACE) and sharpness (IS);

• Theil Inequality Coefficient (TIC): This measures the ratio of 
the variance of the prediction errors to the sum of the variance of 
the predicted values and the variance of the real values. Values 
closer to zero indicate better accuracy;

• Prediction interval coverage probability (PICP): Measures the 
reliability of the predicted intervals by estimating the probability 
that the actual PV power falls within the predicted intervals;

• Prediction interval normalized average width (PINAW): deter
mines the width of the predicted intervals.

Several validation techniques were employed in addition to the 
evaluation metrics. Common techniques include hold-out validation, 
where data is divided into training and testing sets, and k-fold cross-
validation, where the data is divided into multiple folds for training 
and testing. Some papers also utilize sliding window validation and 
multiple-stage validation, allowing for more robust assessments. Sev-
eral papers use a combination of training, validation, and test sets, 
allowing for hyperparameter tuning and unbiased evaluation of unseen 
data. This systematic approach guarantees that the models generalize 
well to unseen data and provides a comprehensive assessment of their 
accuracy and effectiveness in forecasting solar radiation and PV system 
energy production.

To investigate the fifth research question (RQ5), the papers were 
investigated to determine whether they mentioned any limitations or 
suggestions for future approaches. While deep learning shows promise 
for solar forecasting, several limitations hinder its widespread adoption. 
The generalizability of models is often limited by the specific locations 
and datasets used in their development. Limited data availability, 
particularly for extreme weather events, and inconsistencies in data 
quality can impact model accuracy. Complex models, while powerful, 
can be computationally expensive and difficult to interpret. Moreover, 
hyperparameter tuning remains a challenge, often relying on trial-and-
error methods. Many studies focus on forecasting accuracy without 
considering practical integration into grid and energy management 
systems. Future research should prioritize the development of models 
that are generalizable, data-efficient, computationally efficient, and 
readily integrated into real-world applications. Further exploration 
of signal processing techniques and multi-objective optimization ap-
proaches could also significantly enhance solar forecasting accuracy 
and effectiveness.

5. Deep learning-based solar forecasting

In this section, all deep learning models used in solar forecasting 
are explained.

• ANNs: Computational algorithms motivated by the biological 
nervous system, consisting of interconnected neurons structured 
in layers. Each link has a weight, representing its strength. ANNs 
learn by adjusting the weights so that the difference between the 
network’s and the desired output can be minimized [74]. Deep 
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Neural Networks (DNNs) have many hidden layers, referred to as 
the depth of the network. DNNs are capable of learning complex 
patterns and features from data [75].

• RNN: Neural network designed for handling sequential data like 
text, audio, or time series. Its feedback connections are designed 
to influence the current output by allowing information from 
previous time steps [76]. The vanishing gradient problem is a 
challenge for traditional RNNs, which affects their ability to learn 
long-range dependencies during backpropagation.

• LSTM: A variant of RNN, particularly created to address the 
vanishing gradient issue by introducing internal memory cells 
and gating mechanisms. These gates control information flow, 
allowing LSTMs to store and access information over long periods. 
This makes them effective for learning long-range dependen-
cies in sequential data and handling complex [77]. LSTMs are 
computationally more complex than traditional RNNs.

• GRU: Another well-known RNN type that addresses the vanishing 
gradient problem using gates to control information flow. It has 
fewer parameters than LSTMs, which makes GRU computationally 
less expensive and more efficient. They use a combination of reset 
and update gates to learn long-term dependencies [78].

• ENN: A type of RNN that utilizes a context layer to keep in-
formation from previous time steps. This hidden layer stores 
past information and outputs it to the next layer, making ENNs 
appropriate for tasks needed in temporal context, like time series 
prediction [76]. ENNs are simpler than LSTMs and GRUs but may 
not be as effective for learning long-range patterns in complex 
sequential data.

• CNN: CNNs are employed in solar prediction to extract spatial 
and temporal features from image-like data like satellite imagery 
or historical solar irradiance data. They can learn patterns related 
to cloud movements, atmospheric conditions, and other factors 
influencing solar irradiance, which allows for the prediction of 
future solar power generation. For example, study [72] imple-
mented a CNN using satellite images to predict solar irradiance 
in an ultra-short-term frame. This type of use shows the abilities 
of CNNs to process structurally linked data and make accurate 
forecasts [79]. CNNs employ convolutional layers to put filters 
to the input data, capturing patterns such as edges, corners, 
and textures. Pooling layers downsample feature maps, decreas-
ing the number of parameters and making the network more 
efficient [80].;

• Deep CNN (DCNN): DCNNs with several convolutional layers 
excel in solar prediction by capturing complex relationships be-
tween various influencing factors. By stacking convolutional lay-
ers, DCNNs learn progressively more abstract and hierarchical 
features from the data, allowing them to model intricate de-
pendencies between solar radiation and meteorological condi-
tions [81]. DCNNs are almost identical to CNNs but with multiple 
convolutional layers stacked on top of each other. This allows 
them to learn more complex and abstract features from the data, 
improving the accuracy of solar forecasting models [82].;

• Dilated CNN (DCNN*): DCNNs* are particularly great for solar 
forecasting due to their ability to detect long-range dependencies 
in time series data. By employing dilated convolutions, DCNN*s 
expand the receptive field of convolutional filters, allowing them 
to capture the impact of past meteorological events on current 
and future solar irradiance [83]. DCNNs use dilated convolutions, 
which insert gaps between the filter coefficients, effectively ex-
panding the receptive domain of the filters. This grants DCNNs 
to detect long-range temporal dependencies in the data, making 
them to model the influence of past weather patterns on current 
and future solar radiation [84];

• QK-CNN: QK-CNNs can be particularly beneficial in solar predic-
tion when using satellite imagery, as they can extract features at 
multiple scales. By merging convolutional filters of varying sizes, 
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QK-CNNs determine features corresponding to different cloud 
formations and atmospheric conditions, improving the accuracy 
of solar irradiance predictions. QK-CNNs utilize convolutional 
layers with four different kernel sizes, allowing them to extract 
features at multiple scales. This enables them to capture features 
at different levels of detail, enhancing the accuracy of solar 
irradiance predictions [85];

• Hybrid Networks: The abilities of different DL algorithms can 
be combined. Many hybrid models are included in our selec-
tion, such as the following: ELM-LSTM, RNN-LSTM, CNN-GRU, 
LSTM-CNN, and CNN-GRU.

6. Discussion

• General discussion: Such research is vulnerable to validity risks, 
which include external, construct, and dependability threats [107]
This SLR study addresses the external validity and construct 
validity because the initial search string was broad and produced 
a sizable number of studies 155 publications in all. The entire 
range of the SLR was covered by the search query. Since the SLR 
procedure has been elucidated and is repeatable, the validity of 
the SLR can be deemed well-handled in terms of its reliability. 
Should this SLR be repeated, it would yield marginally different 
chosen papers; however, these variations would stem from varied 
subjective assessments. It is quite doubtful, therefore, that the fi-
nal results would vary. In comparison to other systematic reviews 
in this domain, this study distinguishes itself by its exclusive focus 
on deep learning (DL) for solar photovoltaic (PV) forecasting, 
as opposed to broader reviews covering traditional ML, ANNs, 
or general variable renewable energy (VRE) applications [37,
38,42]. For example, Basaran et al. [37] focused on ML, while 
Qazi et al. [38] extensively studied ANNs, and Klaiber and van 
Dinther [42] centered on the broader DL implications in VRE. 
Our findings corroborate the increasing popularity of hybrid DL 
models, a trend also observed in narrative reviews like [45], 
which identified the superior performance of CNN-LSTM and 
similar architectures. However, our systematic approach allows 
for a more rigorous analysis of which models are most frequently 
used and what data pre-processing techniques are used alongside 
them. While previous reviews have mentioned Wavelet Transform 
(WT) and its utility, our SLR identifies it as the predominant 
data decomposition technique. A limitation identified in this 
study, and echoed across the literature is the dependence on 
context-specific data, which limits the generalization capabilities 
of DL-based solar forecasting models. This issue needs to be 
tackled by creating more robust and versatile models in the 
future.

• Search-related discussion: There is a chance that some im-
portant publications were omitted. A higher time frame, more 
synonyms, and a more comprehensive search could have pro-
duced further research. Nonetheless, the search term produced a 
large number of papers, suggesting a sufficiently thorough search.

• RQ1-related (models) discussion: As indicated by Table  5, the 
most popular algorithms are LSTM, CNN, and ANN. ANN means 
Multi-Layer Perceptron which could be named Feedforward Neu-
ral Network, or Backpropagation Neural Networks according to 
our study selection. In most cases, they serve as benchmarking 
algorithms to assess whether the proposed algorithm performs 
better than them. Consequently, even though it appears in numer-
ous studies, this does not imply that it is the best model. Because 
‘‘most used’’ does not certainly mean the best-performing ones, 
Table  5 should be carefully read. In actuality, hybrid models like 
CNN-LSTM, CNN-GRU, DCNN-BILSTM, and (AE-LSTM) as well as 
improved DL models like (DCNN*), BILSTM, and QK-CNN yield 
better outcomes and show great potential. To prevent negative 
effects on the required computational time and resources, it is 
critical to consider how complicated the models are.
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Table A.10
Data decomposition techniques used.
 Ref Key Data decomposition method Utility in solar forecasting Used in  
 [86] WT A mathematical technique that transforms a signal into 

wavelets, localized in both time and frequency domains, 
enabling detailed analysis of signals with varying frequency 
content over time, unlike traditional Fourier analysis.

The WT process involves convolving a signal using 
wavelet functions, each representing a different 
frequency scale, to accurately capture transient and 
stationary aspects of a signal, including solar radiation 
or PV electricity.

P1, P2, P8, P10, 
P14, P16, P19, 
P23

 

 [87] MODWT An extension of the Discrete WT that enhances signal analysis 
by introducing shifted versions of the wavelet filter, resulting 
in overlapping filter outputs, enhancing time–frequency 
resolution, reducing-edge effects, and improving adaptability.

MODWT is a powerful tool for analyzing time series 
data, including solar irradiance measurements. By 
decomposing the signal into different frequency 
components, it helps identify and separate short-term 
fluctuations from long-term trends, enabling more 
accurate solar forecasting.

P4  

 [88] EMD A data-driven technique that decomposes a signal into 
intrinsic mode functions (IMFs), representing specific 
oscillatory modes with varying frequencies and time scales. 
It works iteratively, extracting the most oscillatory 
component, and adapts to non-stationary signals, making it 
effective for complex signals.

EMD allows for a more detailed understanding of the 
complex, multi-scale variability in solar irradiance, 
leading to improved forecasting models that capture 
both short-term and long-term patterns.

P19  

 [89] EWT A hybrid method that uses WT and EMD to analyze a 
signal’s power spectral density and identify dominant 
frequency bands. It then constructs tailored wavelets and 
decomposes the signal, providing a more accurate 
representation of complex, varying frequency content.

EWT enhances solar irradiance forecasts by adjusting 
the wavelet basis to the signal’s unique characteristics, 
providing a more accurate representation compared to 
traditional methods.

P15  

 [90] VMD A new signal decomposition method that breaks a signal into 
intrinsic mode functions (IMFs) occupying specific frequency 
bands. It uses a variational framework to minimize cost 
functions, balancing bandwidth and signal similarity, through 
iterative updates.

VMD is a technique for analyzing non-stationary time 
series data like solar irradiance. It decomposes signals 
into modes, minimizing variational problems, and 
enabling precise identification of solar irradiance 
patterns and improved forecasting models.

P1, P15, P19, 
P24

 

 [91] CEEMD An improvement to the Empirical Mode Decomposition 
(EMD) method, addressing mode mixing. It introduces a 
white noise ensemble, adds and subtracts it multiple times, 
and applies EMD to each noisy signal. This ensemble 
averaging reduces noise influence and improves 
decomposition stability.

CEEMD improves solar irradiance data decomposition 
by introducing multiple noise realizations and 
performing EMD on each realization, reducing mode 
mixing and resulting in more accurate forecasting 
models.

P19  

 [92] CEEMDAN An extension of CEEMD that incorporates adaptive noise, 
adjusting the noise level based on the signal’s characteristics. 
This method preserves intrinsic modes and reduces mode 
mixing and noise artifacts, allowing for more accurate 
decomposition of complex signals.

CEEMDAN is an adaptive approach that aids in 
analyzing complex solar irradiance data, enabling the 
creation of more accurate and robust solar forecasting 
models by providing a deeper understanding of 
intricate patterns within the time series.

P8  
• RQ2-related (preprocessing methods) discussion: based on our 
study, the preprocessing techniques are grouped into four parts, 
data Decomposition, data Clustering, data Augmentation, and 
feature Selection. Wavelet Transform (WT) and VMD are the most 
important for data decomposition. K-Means algorithm and Soft-
DTW-Based K-medoids are the most used for data Clustering. 
Generative Adversarial Networks (GAN) and their variants are 
unique models used for data Augmentation. PEARSON Corre-
lation is the most used for feature Selection. These techniques 
are vital to enhancing deep learning models’ effectiveness in 
solar forecasting. These methods help to enhance data quality, 
reduce noise, reveal hidden patterns, and select relevant features, 
ultimately leading to more accurate and robust predictions. How-
ever, it is important to be aware of potential drawbacks, for 
instance, excessive decomposition can introduce artifacts, clus-
tering techniques may struggle with high-dimensional data, data 
augmentation can introduce bias, and feature selection can lead to 
information loss. Choosing the right techniques and implementing 
them carefully is crucial for optimal model performance.

• RQ3-related (features) discussion: For both solar radiation fore-
casting and PV power forecasting, temperature, pressure, wind 
speed, and humidity are the most often employed features. Along 
with past data on solar radiation and PV. Not every type of 
data is utilized to create the most useful features. For instance, 
temperature is expressed as average temperature; however, ad-
ditional parameters, such as maximum and lowest temperatures, 
are sometimes used. And solar cell-related characteristics like cell 
temperature and current phase average are also employed. In 
13 
addition to these aspects, it should be noted that sky images were 
the main input feature used in [72]. Every pixel in the image 
serves as a numerical input for the DL model. More research 
should focus on this kind of data.

• RQ4-related (evaluation metrics and validation approaches) 
discussion: Nearly all studies used RMSE and MAE to evalu-
ate the model’s quality. MAPE, R2, and its variations, such as 
the correlation coefficient and squared correlation coefficient, 
are additional evaluation criteria. A number of parameters are 
variations of the previously listed ones like Normalized MAPE 
(NMAPE) and Normalized RMSE (NRMSE), which were utilized in 
particular investigations. In addition to less common assessment 
metrics like MSE, MSLE, and MASE. In addition to hold-out 
validation, researchers favored K-cross validation, particularly the 
10-fold cross-validation methodology, as the evaluation approach.

• RQ5-related (challenges) discussion: On the basis of the arti-
cles’ explicit declarations, challenges were reported. There might 
be other difficulties, though, that were not covered in the papers 
that were determined. The major obstacles lie in improving a 
functioning model in the context of inconsistent data quality 
and limited data availability. Much more may be stated about 
the model’s accuracy as more data is collected for testing and 
training. The models’ complexity presents additional comput-
ing challenges, as does their integration into grid and energy 
management systems.

In the future, a number of important areas need to be explored 
to improve the real-world applicability of DL-based solar PV forecast-
ing. To begin with, more powerful models that can generalize well 
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Table A.11
Data clustering/augmentation techniques used.
 Ref Key Data clustering/ augmentation Method Utility in solar forecasting Used in  
 [93] K-Means 

Algorithm
An unsupervised learning method for clustering data 
points. It partitions n data points into k clusters, 
assigning each to the nearest cluster. The algorithm 
works iteratively, assigning data points and recalculating 
centroids until cluster assignments converge.

It improves solar forecasting accuracy by grouping similar 
weather and irradiance data points, identifying distinct 
weather conditions, and optimizing model parameters, thereby 
enhancing the understanding of the complex relationship 
between weather and solar energy production.

P22, P25  

 [94] Soft-DTW-Based 
K-medoids

A clustering algorithm that combines K-medoids and 
Dynamic Time Warping (DTW) to measure similarity 
between time series data points. It uses a differentiable 
version of DTW distance for gradient-based optimization, 
making it suitable for deep learning models.

Soft-DTW-Based K-medoids designed for time series data, 
particularly solar irradiance data. It uses dynamic time 
warping to capture complex patterns, resulting in more 
accurate and nuanced clustering. This improves solar 
forecasting models by better representing real-world solar 
energy production variability.

P5  

 [95] Fuzzy C-means 
(FCM)

A fuzzy clustering algorithm that allows data points to 
belong to multiple clusters with varying membership 
degrees, unlike traditional methods like K-means. It uses 
a membership function to quantify belongingness and 
minimizes squared distances between data points and 
cluster centroids.

Fuzzy C-means (FCM) allows data points to belong to multiple 
clusters simultaneously, making it ideal for analyzing solar 
irradiance data. It can identify subtle relationships and 
transitions, improving solar forecasting models.

P21  

 [96] GANs DL models consisting of a generator and a discriminator. 
The generator produces synthetic data, while the 
discriminator distinguishes between real and generated 
data. Both are trained adversarially, with the generator 
attempting to deceive the discriminator.

GANs can create synthetic solar forecasting data by replicating 
real solar irradiance distribution, enhancing model 
performance and generalizability, especially in limited real 
data-rich environments.

P7  

 [97] TimeGAN A GAN designed for time-series data, capturing temporal 
dependencies and patterns to generate realistic sequences. 
It consists of a time series generator and a time series 
discriminator.

TimeGAN generates synthetic solar irradiance data, capturing 
temporal correlations and seasonal variations. This enhances 
the training dataset, enabling the model to learn more robust 
patterns and handle temporal dependencies better.

P5, P9  

 [98] CTGAN a conditional extension of TimeGAN that incorporates 
additional information like weather conditions or 
geographical location during data generation, generating 
synthetic time-series data conditioned on these specific 
values.

CTGAN is a valuable tool for solar forecasting, as it generates 
synthetic irradiance data based on weather parameters like 
temperature, humidity, and cloud cover, enhancing the 
model’s performance under diverse weather conditions.

P21  
across various geographical regions and climatic conditions need to 
be developed. This could be done by investigating transfer learning 
methods or creating domain adaptation techniques that can utilize data 
from various sources to enhance model performance in data-poor areas. 
Second, computational challenges associated with DL complex models 
should be overcome with research, particularly real-time forecasting. 
This would involve exploring methodologies to compress the models, 
say, pruning or quantization, or designing better DL models in terms 
of reduced resource requirements while they can fit onto edge devices. 
Third, efforts should be made in follow-up research into incorporating 
DL solar PV forecasts in grid management systems, enabling wiser 
decision-making and optimization. This may involve the development 
of interfaces between grid control systems and predictive models, or 
exploring the use of DL in real-time grid stability analysis and control. 
Finally, there is a need for further research on the interpretability of DL 
models, particularly in situations where transparency and accountabil-
ity are paramount. This could involve devising methods for visualizing 
DL model decision-making, or finding out how to use explainable 
AI (XAI) methods for determining the key factors underlying model 
predictions.

Probabilistic forecasting plays a crucial role in managing the in-
herent uncertainty in solar energy production, offering a significant 
advantage over deterministic forecasts, which provide only a single-
point prediction of PV power output. By giving a distribution of possible 
future values through quantiles, probabilistic prediction allows grid 
operators to evaluate risks, plan for contingencies, and make robust 
decisions regarding energy dispatch, storage, and trading. Several tech-
niques have been explored in the literature for producing probabilistic 
solar predictions. Quantile Regression (QR), for instance, directly es-
timates the quantiles of the predictive distribution, giving a flexible 
and non-parametric approach [108]. For instance, [109] used Quantile 
Regression Forests to generate probabilistic day-ahead solar forecasts, 
evaluating performance using the Continuous Ranked Probability Score 
(CRPS) and Average Coverage Error (ACE). Their finding indicated that 
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QR forests demonstrated more reliable uncertainty estimates in compar-
ison to traditional point forecasts, although performance was sensitive 
to hyperparameter tuning. Another popular technique is Gaussian Pro-
cess Regression (GPR), which provides a full predictive distribution 
based on a Gaussian process prior [110]. GPR offers great uncertainty 
quantification abilities but can be computationally expensive for mas-
sive datasets, as shown by Sheng, Hanmin, et al. [111] in their study 
on short-term solar irradiance forecasting. Ensemble methods, such as 
bootstrap aggregating (bagging) and boosting, also offer a promising 
approach to probabilistic forecasting by combining the predictions of 
multiple models [112]. These approaches can enhance robustness and 
precision but require careful consideration of ensemble diversity. The 
efficiency of probabilistic forecasts is typically assessed by employing 
indicators like the CRPS, which determines the overall accuracy of 
the predictive distribution, the ACE, which assesses the calibration 
of the prediction intervals, and the Interval Sharpness (IS), which 
quantifies the width of the prediction intervals [113]. While proba-
bilistic forecasting offers significant benefits, several challenges exist. 
These include the computational cost of some methods, the need for 
reliable historical data to train probabilistic models, and the lack of 
standardized evaluation indicators, making it tough to compare the 
performance of different approaches. Upcoming research should con-
centrate on creating more efficient and robust probabilistic forecasting 
models, enhancing the interpretability of probabilistic predictions, and 
developing standardized evaluation indicators to facilitate comparison 
and benchmarking.

7. Conclusion

In this systematic literature review (SLR), we applied the well-
known Kitchenham methodology to evaluate the diversity of deep 
learning (DL) approaches in solar photovoltaic forecasting. Our anal-
ysis highlights the range of feature sets, forecasting horizons, and 
methodologies used in the selected publications. Although all studies 
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Table A.12
Features selection techniques used.
 Ref Key  Features selection method Utility in solar forecasting Used in  
 [99] Pearson 

correlation
PPMC is a statistical tool used to quantify the linear 
relationship between two continuous variables. There are 
three possible values for this scale: −1 for a perfect 
negative correlation, 0 for no linear connection, and 1 for 
a perfect positive correlation.

It helps identify features that linearly influence solar 
irradiance, such as cloud cover, temperature, and 
humidity.

P3, P11, P21, 
P22

 

 [100] RReliefF Feature 
Selection

RReliefF evaluates feature relevance by comparing 
prediction errors when a feature is randomly perturbed. 
It samples two instances near and far from the target 
instance and assesses the change in prediction error. 
Features causing significant error changes are considered 
more relevant.

RReliefF aids in identifying key features that significantly 
influence solar irradiance predictions, thereby enhancing 
the model’s capacity to capture intricate patterns and 
relationships in solar irradiance data.

P8  

 [101] MRIG A feature selection method that prioritizes features based 
on their individual relevance to the target variable and 
their ability to provide complementary information when 
combined, using mutual information to assess both 
relevance and interaction.

MRIG is a powerful tool in deep learning models for solar 
forecasting, identifying predictive power-enhancing 
feature combinations and identifying synergistic 
relationships between factors like cloud cover and wind 
speed.

P16  

 [102] Spearman 
correlation

It measures the monotonic relationship between two 
variables, considering the order of values rather than 
actual values. It is less sensitive to outliers and can 
handle non-linear relationships, making it suitable for 
identifying features with strong monotonic relationships.

Spearman correlation is a useful tool for deep learning 
models to identify features with strong monotonic trends, 
capturing subtle non-linear relationships in data, which 
can enhance forecast accuracy by capturing non-linear 
relationships.

P21  

 [103] Mutual 
information

It quantifies the dependency between two variables, 
measuring how much information one variable provides 
about the other. It can handle both linear and non-linear 
relationships.

it can identify significant features influencing solar 
irradiance, even if not easily captured by linear 
correlation measures. This information can be valuable 
for deep learning models, resulting in more accurate 
forecasts and robust predictions.

P21  

 [104] PCA A technique that reduces dimensionality by transforming 
correlated variables into principal components, which 
capture the most variance in the data. This reduces 
dimensionality while retaining most information, 
simplifying the model and improving computational 
efficiency.

PCA is a crucial preprocessing step for deep learning 
models in solar forecasting, especially in datasets with 
numerous features. It reduces data dimensionality, 
streamlines training, and enhances model performance 
without sacrificing significant information.

P26  

 [105] XGB feature 
importance

A robust gradient boosting algorithm renowned for its 
accuracy and capacity to handle large datasets, assigning 
a feature importance score based on its contribution to 
model prediction.

XGBoost feature importance helps identify the most 
influential weather variables impacting solar irradiance, 
providing valuable insights for model development and 
improving forecasting accuracy by focusing on the most 
relevant features.

P21  

 [106] Random forest 
feature 
importance

An ensemble learning technique that combines multiple 
decision trees, determining feature importance by the 
average decrease in accuracy when a feature is randomly 
permuted.

It helps determine the most important features for 
predicting solar irradiance within the context of a 
random forest model.

P26  
in our review employed deep learning for solar forecasting, there was 
considerable variation in their choice of features, forecast horizons, and 
prediction approaches (deterministic vs. probabilistic, multi-step ahead 
vs. one-step ahead). These variations were primarily influenced by the 
specific research goals and the availability of relevant datasets, em-
phasizing the context-dependent nature of solar forecasting. Notably, 
our findings demonstrates that models with a higher feature count 
did not necessarily lead to superior prediction performance. Instead, 
feature engineering and data preprocessing emerged as critical factors 
for achieving optimal model outcomes, reinforcing the significance of 
data-driven methodologies in solar forecasting.

Our analysis revealed that certain DL structures are more often used 
in solar prediction than others, with GRUs, CNNs, ANNs, and LSTMs 
being particularly prevalent. Most studies rigorously evaluated several 
DL algorithms to identify the best-performing model and demonstrated 
that hybrid models, which combine the strengths of different models, 
often outperformed their single-model counterparts. This reinforces the 
idea that different models capture different patterns in the complex 
data, and combining them provides a more robust final output. This 
also shows that the best approach might depend on the specifics of the 
application and the available data.

Beyond these observations, our analysis gives key insights into the 
evolution of the solar prediction problem through the lens of deep 
learning. We identified a clear trend toward using more sophisticated 
DL architectures and hybrid techniques, indicating a shift away from 
more basic methods. The increasing complexity in the DL field, coupled 
15 
with the need for improved prediction accuracy, shows the importance 
of continued research in this area. Furthermore, the wide variability 
in feature sets, datasets, and evaluation metrics makes the comparison 
of DL performance between papers quite challenging, suggesting a 
need for standardization within the field. This is especially crucial 
for aiding the development of more standardized and robust methods 
for performance assessment, helping meaningful comparisons across 
different models and application scenarios.

The increasing application of DL models in solar PV forecasting 
offers significant potential for enhancing renewable energy integration 
into power grids. Precise prediction is not merely a technical pursuit; 
it is vital for optimizing grid management, allowing better control of 
energy dispatch, reducing curtailment of green resources, and sup-
porting the reliability and resilience of the power system, which is 
essential to achieving the world’s energy transition goals. For example, 
precise day-ahead forecasting is essential for unit commitment and 
economic dispatch in power systems with high integration of solar en-
ergy. Based on the current limitations identified, upcoming studies need 
to concentrate on developing more robust, flexible, and interpretable 
DL architectures, which can better account for uncertainties, adapt to 
varying weather conditions, and integrate with real-time forecasting 
needs. In addition, upcoming research should explore the penetration 
of diverse data sources, such as satellite imagery, IoT-based weather 
sensor data, and potentially even past grid load information, to improve 
the accuracy and robustness of solar prediction models. In addition, a 
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Table A.13
Feature engineering techniques used.
 Key Metric definition Formula  
 RMSE Measurement of the typical size of a group of predictions’ errors. Larger errors are given greater 

weight than lesser errors.
RMSE =

√

∑𝑛
𝑖=1 (𝑦𝑖−�̂�𝑖 )2

𝑛
 

 MAE A measure of the typical size of a group of predictions’ errors. Larger errors are given greater weight 
than lesser errors.

MAE =
∑𝑛

𝑖=1 |𝑦𝑖−�̂�𝑖 |
𝑛

 

 MAPE an evaluation of the typical percentage variation between the numbers that were expected and those 
that were recorded. It facilitates comparisons between various datasets or models by offering a 
relative estimate of inaccuracy.

MAPE = 100% ×
∑𝑛

𝑖=1

(

|𝑦𝑖−�̂�𝑖 |
|𝑦𝑖 |

)

𝑛
 

 R2 A metric indicating how well the data match the regression model. It shows the percentage of the 
dependent variable’s variance that the independent variable accounts for.

𝑅2 = 1 −
∑𝑛

𝑖=1 (𝑦𝑖−�̂�𝑖 )
2

∑𝑛
𝑖=1 (𝑦𝑖−�̄�)2

 

 R A measure of the linear connection between the actual and projected values. Its values range from −1 
to 1, where 0 denotes no correlation, −1 represents a perfect negative correlation, and 1 represents a 
perfect positive correlation.

R = Cov(𝑦,�̂�)
𝜎𝑦 ⋅𝜎�̂�

⋅
∑𝑛

𝑖=1(𝑦𝑖 − �̄�)2  

 MBE A measure of the predictions’ typical bias. It shows whether actual values are routinely 
underestimated or overestimated by the model.

MBE =
∑𝑛

𝑖=1 (�̂�𝑖−𝑦𝑖 )
𝑛

 

 FS A measure of the improvement of the forecast compared to a baseline forecast (e.g., persistence 
forecast). It shows how much better the model performs than a simple prediction method.

FS = 1 − RMSEmodel
RMSEbaseline

 

 MSE A measure of the mean squared discrepancy between the actual and expected values. Greater 
penalties are applied to bigger mistakes than to smaller ones.

MSE =
∑𝑛

𝑖=1 (𝑦𝑖−�̂�𝑖 )
2

𝑛
 

 MSLE A measure of the mean squared logarithmic discrepancy between the actual and projected values. 
When working with data that has a large range of values, it is especially helpful.

MSLE =
∑𝑛

𝑖=1
(

log(𝑦𝑖+1)−log(�̂�𝑖+1)
)2

𝑛
 

 MASE An equation that takes the mean absolute error of the naive forecast and scales it by that of the prior 
value (predicting the previous value as the next). It makes it possible to compare models more 
thoroughly between various datasets.

MASE =
∑𝑛

𝑖=1 |�̂�𝑖−𝑦𝑖 |
∑𝑛
𝑖=2 |𝑦𝑖−𝑦𝑖−1 |

𝑛−1

 

 NIA a measurement of the degree of agreement between the actual and projected values. It has a range of 
−1 to 1, with 1 denoting perfect disagreement, 0 denoting no agreement, and 1 denoting perfect 
agreement.

d = 1 −
∑𝑛

𝑖=1 (𝑦𝑖−�̂�𝑖 )
2

∑𝑛
𝑖=1

(

|𝑦𝑖−�̄�|+|�̂�𝑖−�̄�|
)2  

 U1 A measure of the relative bias in the predictions. It indicates how much the model overstates or 
understates the real values compared to a simple average.

U1 =
√

∑𝑛
𝑖=1 (�̂�𝑖−𝑦𝑖 )2

∑𝑛
𝑖=1 (𝑦𝑖−�̄�)2

 

 U2 A measure of the relative inefficiency in the predictions. It indicates how much the model’s 
predictions differ from the real values compared to a simple average.

U2 =
√

∑𝑛
𝑖=1 (�̂�𝑖−𝑦𝑖 )2

∑𝑛
𝑖=1 (�̂�𝑖−�̄�)2

 

 MHE Robust loss function that combines the advantages of Mean Absolute Error and Mean Squared Error. 
Compared to MSE, it is less susceptible to outliers but more sensitive to small errors than MAE.

MHE = 1
𝑛

∑𝑛
𝑖=1 𝛿(𝑦𝑖 − �̂�𝑖)  

 SCC The correlation coefficient squared (r). It shows the percentage of the dependent variable’s variance 
that the independent variable accounts for.

SCC =
(

Cov(𝑦,�̂�)
𝜎𝑦 ⋅𝜎�̂�

)2  

𝑦𝑖 is the actual value,
�̂�𝑖 is the predicted value,
�̄� is the mean of the actual values,
𝜎𝑦 is the standard deviation of the actual values,
𝜎�̂� is the standard deviation of the predicted values,
𝑛 is the number of data points.
stronger emphasis on explainable AI (XAI) would increase the trust-
worthiness and adoption of DL models in the solar energy sector, by 
providing insights into why a model made a certain prediction.

In conclusion, this SLR fills a critical gap in the literature by pro-
viding a comprehensive and systematic investigation of DL techniques 
for solar PV prediction. Unlike previous reviews that concentrated on 
broader ML approaches or specific ANN models, this study analyzed a 
wider range of DL models, including CNNs, RNNs, and hybrid architec-
tures, highlighting the trend toward more complex and sophisticated 
architectures. Furthermore, it showed the importance of feature engi-
neering and data preprocessing techniques, identifying key approaches 
such as Wavelet Transform and GANs that are vital for enhancing model 
performance. Finally, this SLR addressed the limitations related to gen-
eralization, interpretability, and operating efficiency, giving valuable 
insights for future research and development in this rapidly developing 
field. The findings of this review will guide researchers and practition-
ers in the development and deployment of more accurate, robust, and 
efficient deep learning-based solar forecasting systems, contributing to 
the integration of renewable energy into power grids.
16 
Building on the results and the limitations identified in this review, 
our future work will focus on developing a DL-based solar forecast-
ing system, with particular attention to incorporating more advanced 
hybrid techniques with traditional statistical approaches addressing un-
certainty in predictions using probabilistic forecasting and developing 
explainable DL techniques. The field of DL-based solar forecasting is 
rapidly evolving, and this SLR will serve as a solid foundation to guide 
research in this important direction.
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Appendix

In A.10, the data decomposition methods used, their definitions, 
utility, and the paper used each method.

In A.11, the Data Clustering and augmentation techniques used, 
their definitions, utility, and the paper used each method.

In A.12, the features selection techniques used, their definitions, 
utility, and the paper used each method.

In A.13, the metrics used, their definition and formula.

Data availability

No data was used for the research described in the article.

References

[1] Maomao Chi, Rui Huang, Joey F. George, Collaboration in demand-driven 
supply chain: Based on a perspective of governance and IT-business strategic 
alignment, Int. J. Inf. Manage. 52 (2020) 102062.

[2] John Collins, et al., A market architecture for multi-agent contracting. a 
market architecture for multi-agent contracting, in: Proceedings of the Second 
International Conference on Autonomous Agents, 1998.

[3] Mark E. Nissen, Kishore Sengupta, Incorporating software agents into supply 
chains: Experimental investigation with a procurement task, Mis Q. (2006) 
145–166.

[4] Roy Schwartz, et al., Green ai, Commun. ACM 63 (12) (2020) 54–63.
[5] Yogesh K. Dwivedi, et al., Artificial intelligence (AI): Multidisciplinary perspec-

tives on emerging challenges, opportunities, and agenda for research, practice 
and policy, Int. J. Inf. Manage. 57 (2021) 101994.

[6] Huaizhi Wang, et al., A review of deep learning for renewable energy 
forecasting, Energy Convers. Manage. 198 (2019) 111799.

[7] A. Ng, Machine learning yearning: Techincal strategy for AI engineers, in: In 
the Era of Deep Learning., 2018.

[8] I.T. Author, The title of the cited article, J. Abbr. 10 (2008) 142–149.
[9] Aqsa Rana, Gyula Gróf, Assessment of the electricity system transition towards 

high share of renewable energy sources in south Asian countries, Energies 15 
(3) (2022) 1139.

[10] Cherrelle Eid, et al., Managing electric flexibility from distributed energy 
resources: A review of incentives for market design, Renew. Sustain. Energy 
Rev. 64 (2016) 237–247.

[11] Sthitapragyan Mohanty, et al., Forecasting of solar energy with application for 
a growing economy like India: Survey and implication, Renew. Sustain. Energy 
Rev. 78 (2017) 539–553.

[12] Munir Husein, Il-Yop Chung, Day-ahead solar irradiance forecasting for micro-
grids using a long short-term memory recurrent neural network: A deep learning 
approach, Energies 12 (10) (2019) 1856.

[13] Can Wan, et al., Photovoltaic and solar power forecasting for smart grid energy 
management, CSEE J. Power Energy Syst. 1 (4) (2015) 38–46.

[14] Souhaib Ben Taieb, et al., A review and comparison of strategies for multi-step 
ahead time series forecasting based on the NN5 forecasting competition, Expert 
Syst. Appl. 39 (8) (2012) 7067–7083.

[15] Alfredo Nespoli, et al., Day-ahead photovoltaic forecasting: A comparison of the 
most effective techniques, Energies 12 (9) (2019) 1621.

[16] Han Seung Jang, et al., Solar power prediction based on satellite images and 
support vector machine, IEEE Trans. Sustain. Energy 7 (3) (2016) 1255–1263.

[17] David P. Larson, Lukas Nonnenmacher, Carlos FM Coimbra, Day-ahead forecast-
ing of solar power output from photovoltaic plants in the American Southwest, 
Renew. Energy 91 (2016) 11–20.

[18] Xinmin Zhang, et al., A solar time based analog ensemble method for regional 
solar power forecasting, IEEE Trans. Sustain. Energy 10 (1) (2018) 268–279.

[19] Sophie Pelland, George Galanis, George Kallos, Solar and photovoltaic forecast-
ing through post-processing of the Global Environmental Multiscale numerical 
weather prediction model, Prog. Photovolt., Res. Appl. 21 (3) (2013) 284–296.

[20] Guochang Wang, Yan Su, Lianjie Shu, One-day-ahead daily power forecasting 
of photovoltaic systems based on partial functional linear regression models, 
Renew. Energy 96 (2016) 469–478.

[21] Andre M. Nobre, et al., PV power conversion and short-term forecasting in 
a tropical, densely-built environment in Singapore, Renew. Energy 94 (2016) 
496–509.

[22] Dazhi Yang, Zibo Dong, Operational photovoltaics power forecasting using 
seasonal time series ensemble, Sol. Energy 166 (2018) 529–541.

[23] Xwegnon Ghislain Agoua, Robin Girard, George Kariniotakis, Probabilistic 
models for spatio-temporal photovoltaic power forecasting, IEEE Trans. Sustain. 
Energy 10 (2) (2018) 780–789.

[24] Antonio Bracale, Guido Carpinelli, Pasquale De Falco, A probabilistic com-
petitive ensemble method for short-term photovoltaic power forecasting, IEEE 
Trans. Sustain. Energy 8 (2) (2016) 551–560.
17 
[25] Mohammad Javad Sanjari, H.B. Gooi, Probabilistic forecast of PV power 
generation based on higher order Markov chain, IEEE Trans. Power Syst. 32 
(4) (2016) 2942–2952.

[26] Stuart J. Russell, Peter Norvig, Artificial Intelligence a Modern Approach, 
London, 2010.

[27] Adel Mellit, Soteris A. Kalogirou, Artificial intelligence techniques for pho-
tovoltaic applications: A review, Prog. Energy Combust. Sci. 34 (5) (2008) 
574–632.

[28] Alberto Dolara, et al., A physical hybrid artificial neural network for short term 
forecasting of PV plant power output, Energies 8 (2) (2015) 1138–1153.

[29] Moufida Bouzerdoum, Adel Mellit, A. Massi Pavan, A hybrid model (SARIMA–
SVM) for short-term power forecasting of a small-scale grid-connected 
photovoltaic plant, Sol. Energy 98 (2013) 226–235.

[30] Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Deep learning, Nature 521 (7553) 
(2015) 436–444.

[31] Zhi Wang, Wenyuan Xue, Kuangyu Li, Zhenhao Tang, Yang Liu, Fan Zhang, 
Shengxian Cao, Xianyong Peng, Edmond Q. Wu, Huaichun Zhou, Dynamic 
combustion optimization of a pulverized coal boiler considering the wall 
temperature constraints: A deep reinforcement learning-based framework, Appl. 
Therm. Eng. 259 (2025) 124923.

[32] Zhi Wang, Huaichun Zhou, Xianyong Peng, Shengxian Cao, Zhenhao Tang, 
Kuangyu Li, Siyuan Fan, Wenyuan Xue, Guojia Yao, Shiming Xu, A predictive 
model with time-varying delays employing channel equalization convolutional 
neural network for NOx emissions in flexible power generation, Energy 306 
(2024) 132495.

[33] Guiju Zhang, Caiyuan Xiao, Navid Razmjooy, Optimal operational strategy of 
hybrid PV/wind renewable energy system using homer: a case study, Int. J. 
Ambient Energy 43 (1) (2022) 3953–3966.

[34] Muhammad Basit Umair, Zeshan Iqbal, Muhammad Ahmad Faraz, Muham-
mad Attique Khan, Yu-Dong Zhang, Navid Razmjooy, Sefedine Kadry, A network 
intrusion detection system using hybrid multilayer deep learning model, Big 
Data 12 (5) (2024) 367–376.

[35] Kai Petersen, Sairam Vakkalanka, Ludwik Kuzniarz, Guidelines for conducting 
systematic mapping studies in software engineering: An update,  Inf. Softw. 
Technol. 64 (2015) 1–18.

[36] B. Kitchenham, S. Charters, D. Budgen, P. Brereton, M. Turner, S. Linkman, G. 
Visaggio, Guidelines for Performing Systematic Literature Reviews in Software 
Engineering, 2007.

[37] Kvanç Baaran, et al., Systematic literature review of photovoltaic output power 
forecasting, IET Renew. Power Gener. 10 (2020) 1004–1012.

[38] Atika Qazi, et al., The artificial neural network for solar radiation prediction 
and designing solar systems: a systematic literature review, J. Clean. Prod. 104 
(2015) 1–12.

[39] Kelachukwu J. Iheanetu, Solar photovoltaic power forecasting: A review, 
Sustainability 14 (24) (2022) 17005.

[40] Sobrina Sobri, Sam Koohi-Kamali, Nasrudin Abd Rahim, Solar photovoltaic 
generation forecasting methods: A review, Energy Convers. Manage. 156 (2018) 
459–497.

[41] Konduru Sudharshan, et al., Systematic review on impact of different irradiance 
forecasting techniques for solar energy prediction, Energies 15 (17) (2022) 
6267.

[42] Janice Klaiber, Clemens van Dinther, Deep learning for variable renewable 
energy: A systematic review,  ACM Comput. Surv. (2020).

[43] Huaizhi Wang, et al., Taxonomy research of artificial intelligence for de-
terministic solar power forecasting, Energy Convers. Manage. 2020 (2020) 
112909.

[44] Adel Mellit, et al., Advanced methods for photovoltaic output power forecasting: 
A review, Appl. Sci. 10 (2) (2020) 487.

[45] Rial A. Rajagukguk, Raden AA Ramadhan, Hyun-Jin Lee, A review on deep 
learning models for forecasting time series data of solar irradiance and 
photovoltaic power,  Energies 13 (24) (2020) 6623.

[46] Younes Ledmaoui, Adila El Maghraoui, Mohamed El Aroussi, Rachid Saadane, 
Ahmed Chebak, Abdellah Chehri, Forecasting solar energy production: A 
comparative study of machine learning algorithms, Energy Rep. 13 (24) (2023) 
6623.

[47] Gabriel de Freitas Viscondi, Solange N. Alves-Souza, A systematic literature 
review on big data for solar photovoltaic electricity generation forecasting, 
Sustain. Energy Technol. Assess. 31 (2019) 54–63.

[48] Mahima Sivakumar, et al., Nine novel ensemble models for solar radiation 
forecasting in Indian cities based on VMD and DWT integration with the 
machine and deep learning algorithms, Comput. Electr. Eng. 108 (2023) 
108691.

[49] Huaizhi Wang, et al., Deterministic and probabilistic forecasting of photovoltaic 
power based on deep convolutional neural network, Energy Convers. Manage. 
153 (2017) 409–422.

[50] Priyanka Chaudhary, M. Rizwan, Energy management supporting high penetra-
tion of solar photovoltaic generation for smart grid using solar forecasts and 
pumped hydro storage system, Renew. Energy 118 (2018) 928–946.

[51] Nonita Sharma, et al., A sequential ensemble model for photovoltaic power 
forecasting, Comput. Electr. Eng. 96 (2021) 107484.

http://refhub.elsevier.com/S2211-467X(25)00098-7/sb1
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb1
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb1
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb1
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb1
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb2
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb2
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb2
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb2
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb2
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb3
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb3
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb3
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb3
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb3
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb4
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb5
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb5
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb5
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb5
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb5
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb6
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb6
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb6
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb7
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb7
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb7
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb8
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb9
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb9
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb9
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb9
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb9
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb10
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb10
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb10
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb10
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb10
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb11
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb11
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb11
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb11
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb11
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb12
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb12
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb12
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb12
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb12
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb13
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb13
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb13
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb14
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb14
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb14
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb14
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb14
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb15
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb15
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb15
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb16
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb16
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb16
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb17
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb17
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb17
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb17
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb17
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb18
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb18
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb18
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb19
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb19
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb19
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb19
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb19
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb20
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb20
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb20
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb20
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb20
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb21
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb21
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb21
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb21
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb21
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb22
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb22
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb22
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb23
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb23
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb23
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb23
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb23
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb24
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb24
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb24
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb24
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb24
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb25
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb25
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb25
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb25
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb25
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb26
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb26
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb26
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb27
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb27
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb27
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb27
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb27
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb28
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb28
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb28
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb29
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb29
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb29
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb29
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb29
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb30
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb30
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb30
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb31
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb31
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb31
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb31
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb31
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb31
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb31
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb31
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb31
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb32
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb32
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb32
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb32
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb32
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb32
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb32
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb32
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb32
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb33
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb33
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb33
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb33
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb33
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb34
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb34
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb34
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb34
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb34
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb34
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb34
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb35
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb35
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb35
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb35
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb35
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb36
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb36
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb36
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb36
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb36
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb37
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb37
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb37
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb38
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb38
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb38
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb38
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb38
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb39
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb39
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb39
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb40
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb40
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb40
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb40
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb40
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb41
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb41
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb41
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb41
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb41
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb42
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb42
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb42
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb43
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb43
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb43
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb43
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb43
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb44
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb44
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb44
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb45
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb45
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb45
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb45
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb45
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb46
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb46
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb46
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb46
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb46
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb46
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb46
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb47
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb47
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb47
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb47
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb47
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb48
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb48
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb48
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb48
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb48
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb48
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb48
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb49
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb49
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb49
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb49
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb49
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb50
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb50
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb50
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb50
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb50
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb51
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb51
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb51


O. Khouili et al. Energy Strategy Reviews 59 (2025) 101735 
[52] Qing Li, et al., A multi-step ahead photovoltaic power forecasting model based 
on TimeGAN, soft DTW-based K-medoids clustering, and a CNN-GRU hybrid 
neural network, Energy Rep. 8 (2022) 10346–10362.

[53] Xiaoying Ren, et al., Quad-kernel deep convolutional neural network for 
intra-hour photovoltaic power forecasting, Appl. Energy 323 (2022) 119682.

[54] Abbas Mohammed Assaf, et al., Improving solar radiation forecasting utilizing 
data augmentation model generative adversarial networks with convolutional 
support vector machine (GAN-CSVR), Appl. Sci. 13 (23) (2023) 12768.

[55] Hakan Acikgoz, A novel approach based on integration of convolutional neural 
networks and deep feature selection for short-term solar radiation forecasting, 
Appl. Energy 305 (2022) 117912.

[56] Ling-Man Liu, et al., Dual-dimension time-GGAN data augmentation method for 
improving the performance of deep learning models for PV power forecasting, 
Energy Rep. 9 (2023) 6419–6433.

[57] Bo Gu, et al., Forecasting and uncertainty analysis of day-ahead photovoltaic 
power based on WT-CNN-BILSTM-AM-GMM, Sustainability 15 (8) (2023) 6538.

[58] Muhammad Aslam, et al., AE-LSTM based deep learning model for degradation 
rate influenced energy estimation of a PV system, Energies 13 (17) (2020) 
4373.

[59] He Jiang, Model forecasting based on two-stage feature selection procedure 
using orthogonal greedy algorithm, Appl. Soft Comput. 63 (2018) 110–123.

[60] Altaf Hussain, et al., A hybrid deep learning-based network for photovoltaic 
power forecasting, Complexity 1 (2022) 7040601.

[61] Fei Wang, et al., Wavelet decomposition and convolutional LSTM networks 
based improved deep learning model for solar irradiance forecasting, Appl. Sci. 
8 (8) (2018) 1286.

[62] Haixiang Zang, et al., Day-ahead photovoltaic power forecasting approach based 
on deep convolutional neural networks and meta learning, Int. J. Electr. Power 
Energy Syst. 118 (2020) 105790.

[63] Gholamreza Memarzadeh, Farshid Keynia, Solar power generation forecasting 
by a new hybrid cascaded extreme learning method with maximum relevance 
interaction gain feature selection, Energy Convers. Manage. 298 (2023) 117763.

[64] Qian Huang, Shanyang Wei, Improved quantile convolutional neural network 
with two-stage training for daily-ahead probabilistic forecasting of photovoltaic 
power, Energy Convers. Manage. 220 (2020) 113085.

[65] Chun-Hung Liu, Jyh-Cherng Gu, Ming-Ta Yang, A simplified LSTM neural 
networks for one day-ahead solar power forecasting, IEEE Access 9 (2021) 
17174–17195.

[66] Yugui Tang, et al., Photovoltaic power forecasting: A hybrid deep learning 
model incorporating transfer learning strategy, Renew. Sustain. Energy Rev. 
162 (2022) 112473.

[67] Oveis Abedinia, David Raisz, Nima Amjady, Effective prediction model for 
hungarian small-scale solar power output, IET Renew. Power Gener. 11 (13) 
(2017) 1648–1658.

[68] Fengyun Li, Haofeng Zheng, Xingmei Li, A novel hybrid model for multi-step 
ahead photovoltaic power prediction based on conditional time series generative 
adversarial networks,  Renew. Energy 199 (2022) 560–586.

[69] Jyothi Varanasi, M.M. Tripathi, K-means clustering based photo voltaic power 
forecasting using artificial neural network, particle swarm optimization and 
support vector regression, J. Inf. Optim. Sci. 40 (2) (2019) 309–328.

[70] Soufiane Gaizen, Ouafia Fadi, Ahmed Abbou, Solar power time series prediction 
using wavelet analysis, Int. J. Renew. Energy Res. ( IJRER) 10 (4) (2020) 
1764–1773.

[71] Tuo Xie, et al., A hybrid forecasting method for solar output power based 
on variational mode decomposition, deep belief networks and auto-regressive 
moving average, Appl. Sci. 8 (10) (2018) 1901.

[72] Zhao Zhen, et al., Deep learning based surface irradiance mapping model for 
solar PV power forecasting using sky image, IEEE Trans. Ind. Appl. 56 (4) 
(2020) 3385–3396.

[73] Usman Munawar, Zhanle Wang, A framework of using machine learning 
approaches for short-term solar power forecasting, J. Electr. Eng. Technol. 15 
(2) (2020) 561–569.

[74] Ian Goodfellow, Deep Learning, Vol. 196, MIT Press, 2016.
[75] Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Deep learning, Nature 521 (7553) 

(2015) 436–444.
[76] Jeffrey L. Elman, Finding structure in time, Cogn. Sci. 14 (2) (1990) 179–211.
[77] S. Hochreiter, Long Short-Term Memory, Neural Computation MIT-Press, 1997.
[78] Junyoung Chung, Empirical evaluation of gated recurrent neural networks on 

sequence modeling, 2014, arXiv preprint arXiv:1412.3555.
[79] Shifu Zhou, et al., Spatial–temporal convolutional neural networks for anomaly 

detection and localization in crowded scenes, Signal Process., Image Commun. 
47 (2016) 358–368.

[80] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, Imagenet classification with 
deep convolutional neural networks,  Adv. Neural Inf. Process. Syst. (2012) 25.

[81] Cong Feng, Jie Zhang, SolarNet: A sky image-based deep convolutional neural 
network for intra-hour solar forecasting, Sol. Energy 204 (2020) 71–78.

[82] Karen Simonyan, Andrew Zisserman, Very deep convolutional networks for 
large-scale image recognition, 2014, arXiv preprint arXiv:1409.1556.

[83] Yangfan Li, et al., Modeling temporal patterns with dilated convolutions for 
time-series forecasting, ACM Trans. Knowl. Discov. from Data ( TKDD) 16 (1) 
(2021) 1–22.
18 
[84] Fisher Yu, Vladlen Koltun, Multi-scale context aggregation by dilated 
convolutions, 2015, arXiv preprint arXiv:1511.07122.

[85] Kaiming He, et al., Deep residual learning for image recognition, in: Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[86] Stephane G. Mallat, A theory for multiresolution signal decomposition: the 
wavelet representation, JIEEE Trans. Pattern Anal. Mach. Intell. 11 (7) (1989) 
674–693.

[87] Donald B. Percival, Andrew T. Walden, Wavelet Methods for Time Series 
Analysis, Vol. 4, Cambridge University Press, 2000.

[88] Norden E. Huang, et al., The empirical mode decomposition and the Hilbert 
spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. 
Lond. Ser. A Math. Phys. Eng. Sci. 454 (1971) (1998) 903–995.

[89] Jerome Gilles, Empirical wavelet transform, EEE Trans. Signal Process. 61 (16) 
(2013) 3999–4010.

[90] Konstantin Dragomiretskiy, Dominique Zosso, Variational mode decomposition, 
IEEE Trans. Signal Process. 62 (3) (2013) 142–149.

[91] Jia-Rong Yeh, Jiann-Shing Shieh, Norden E. Huang, Complementary ensemble 
empirical mode decomposition: A novel noise enhanced data analysis method, 
Adv. Adapt. Data Anal. 2 (02) (2010) 135–156.

[92] María E. Torres, et al., A complete ensemble empirical mode decomposition 
with adaptive noise, in: 2011 IEEE International Conference on Acoustics, 
Speech and Signal Processing, ICASSP, IEEE, 2011.

[93] J. Macqueen, Some Methods for Classification and Analysis of Multivariate 
Observations, University of California Press, 1967.

[94] Marco Cuturi, Mathieu Blondel, Soft-dtw: a differentiable loss function for 
time-series, in: International Conference on Machine Learning, PMLR, 2017.

[95] James C. Bezdek, Pattern Recognition with Fuzzy Objective Function 
Algorithms, Springer Science & Business Media, 2013.

[96] Ian Goodfellow, et al., Generative adversarial nets, Adv. Neural Inf. Process. 
Syst. (2014) 27.

[97] Jinsung Yoon, Daniel Jarrett, Mihaela Van der Schaar, Time-series generative 
adversarial networks, Adv. Neural Inf. Process. Syst. (2019) 32.

[98] Giorgia Ramponi, et al., T-cgan: Conditional generative adversarial network for 
data augmentation in noisy time series with irregular sampling, 2018, JarXiv 
preprint arXiv:1811.08295.

[99] Karl X. Pearson, On the Criterion that a Given System of Deviations from the 
Probable in the Case of a Correlated System of Variables Is Such that It Can 
Be Reasonably Supposed To Have Arisen from Random Sampling, Lond. Edinb. 
Dublin Philos. Mag. J. Sci. 50 (302) (1900) 157–175.

[100] Igor Kononenko, Estimating attributes: Analysis and extensions of RELIEF, in: 
European Conference on Machine Learning, Springer Berlin Heidelberg, Berlin, 
Heidelberg, 1994.

[101] Lianxi Wang, Shengyi Jiang, Siyu Jiang, A feature selection method via analysis 
of relevance, redundancy, and interaction, Expert Syst. Appl. 183 (2021) 
115365.

[102] Charles Spearman, The proof and measurement of association between two 
things, Am. J. Psychol. 100 (1) (1987) 441–471.

[103] Thomas M. Cover, Elements of Information Theory, John Wiley & Sons, 1999.
[104] Ian T. Jolliffe, Principal Component Analysis for Special Types of Data, Springer 

New York, 2002.
[105] Tianqi Chen, Carlos Guestrin, Xgboost: A scalable tree boosting system, in: 

Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge 
Discovery and Data Mining., 2016.

[106] Leo Breiman, Random Forests, Vol. 45, 2001, pp. 5–32, Breiman, Leo. Random 
forests..

[107] Darja Šmite, et al., Empirical evidence in global software engineering: a 
systematic review, Empir. Softw. Eng. 15 (2010) 91–118.

[108] Luca Massidda, Marino Marrocu, Quantile regression post-processing of weather 
forecast for short-term solar power probabilistic forecasting, Energies 11 (7) 
(2018) 1763.

[109] Yixiao Yu, Mengxia Wang, Fangqing Yan, Ming Yang, Jiajun Yang, Improved 
convolutional neural network-based quantile regression for regional photo-
voltaic generation probabilistic forecast, ET Renew. Power Gener. 14 (14) 
(2020) 2712–02719.

[110] Jie Wang, An intuitive tutorial to Gaussian process regression, Comput. Sci. 
Eng. 25 (4) (2023) 4–11.

[111] Hanmin Sheng, Jian Xiao, Yuhua Cheng, Qiang Ni, Song Wang, Short-term solar 
power forecasting based on weighted Gaussian process regression, IEEE Trans. 
Ind. Electron. 65 (1) (2017) 300–308.

[112] Hao Wu, David Levinson, The ensemble approach to forecasting: A review and 
synthesis, Transp. Res. Part C: Emerg. Technol. 132 (2021) 103357.

[113] Huaizhi Wang, Haiyan Yi, Jianchun Peng, Guibin Wang, Yitao Liu, Hui Jiang, 
Wenxin Liu, Deterministic and probabilistic forecasting of photovoltaic power 
based on deep convolutional neural network,  Energy Convers. Manag. 153 
(2017) 409–422.

http://refhub.elsevier.com/S2211-467X(25)00098-7/sb52
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb52
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb52
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb52
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb52
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb53
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb53
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb53
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb54
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb54
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb54
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb54
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb54
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb55
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb55
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb55
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb55
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb55
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb56
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb56
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb56
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb56
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb56
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb57
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb57
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb57
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb58
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb58
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb58
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb58
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb58
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb59
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb59
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb59
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb60
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb60
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb60
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb61
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb61
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb61
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb61
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb61
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb62
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb62
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb62
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb62
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb62
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb63
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb63
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb63
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb63
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb63
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb64
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb64
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb64
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb64
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb64
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb65
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb65
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb65
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb65
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb65
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb66
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb66
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb66
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb66
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb66
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb67
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb67
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb67
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb67
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb67
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb68
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb68
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb68
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb68
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb68
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb69
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb69
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb69
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb69
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb69
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb70
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb70
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb70
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb70
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb70
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb71
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb71
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb71
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb71
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb71
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb72
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb72
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb72
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb72
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb72
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb73
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb73
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb73
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb73
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb73
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb74
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb75
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb75
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb75
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb76
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb77
http://arxiv.org/abs/1412.3555
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb79
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb79
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb79
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb79
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb79
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb80
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb80
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb80
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb81
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb81
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb81
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb83
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb83
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb83
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb83
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb83
http://arxiv.org/abs/1511.07122
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb85
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb85
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb85
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb86
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb86
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb86
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb86
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb86
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb87
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb87
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb87
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb88
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb88
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb88
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb88
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb88
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb89
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb89
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb89
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb90
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb90
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb90
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb91
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb91
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb91
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb91
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb91
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb92
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb92
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb92
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb92
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb92
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb93
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb93
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb93
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb94
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb94
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb94
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb95
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb95
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb95
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb96
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb96
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb96
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb97
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb97
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb97
http://arxiv.org/abs/1811.08295
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb99
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb99
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb99
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb99
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb99
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb99
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb99
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb100
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb100
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb100
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb100
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb100
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb101
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb101
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb101
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb101
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb101
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb102
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb102
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb102
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb103
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb104
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb104
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb104
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb105
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb105
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb105
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb105
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb105
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb106
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb106
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb106
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb107
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb107
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb107
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb108
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb108
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb108
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb108
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb108
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb109
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb109
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb109
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb109
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb109
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb109
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb109
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb110
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb110
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb110
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb111
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb111
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb111
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb111
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb111
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb112
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb112
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb112
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb113
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb113
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb113
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb113
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb113
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb113
http://refhub.elsevier.com/S2211-467X(25)00098-7/sb113

	Evaluating the impact of deep learning approaches on solar and photovoltaic power forecasting: A systematic review
	Introduction
	Related Works and Motivation
	Research methodology
	Protocol
	Research Questions
	Search Strategy
	Inclusion and Exclusion Criteria

	Results
	Deep Learning-based Solar Forecasting
	Discussion
	Conclusion
	Funding
	Declaration of competing interest
	Appendix
	Data availability
	References


