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Wheat is one of the world’s most widely cultivated cereal crops and is a primary food source for a 
significant portion of the population. Wheat goes through several distinct developmental phases, 
and accurately identifying these stages is essential for precision farming. Determining wheat 
growth stages accurately is crucial for increasing the efficiency of agricultural yield in wheat farming. 
Preliminary research identified obstacles in distinguishing between these stages, negatively impacting 
crop yields. To address this, this study introduces an innovative approach, MobDenNet, based on 
data collection and real-time wheat crop stage recognition. The data collection utilized a diverse 
image dataset covering seven growth phases ‘Crown Root’, ‘Tillering’, ‘Mid Vegetative’, ‘Booting’, 
‘Heading’, ‘Anthesis’, and ‘Milking’, comprising 4496 images. The collected image dataset underwent 
rigorous preprocessing and advanced data augmentation to refine and minimize biases. This study 
employed deep and transfer learning models, including MobileNetV2, DenseNet-121, NASNet-Large, 
InceptionV3, and a convolutional neural network (CNN) for performance comparison. Experimental 
evaluations demonstrated that the transfer model MobileNetV2 achieved 95% accuracy, DenseNet-121 
achieved 94% accuracy, NASNet-Large achieved 76% accuracy, InceptionV3 achieved 74% accuracy, 
and the CNN achieved 68% accuracy. The proposed novel hybrid approach, MobDenNet, that 
synergistically merges the architectures of MobileNetV2 and DenseNet-121 neural networks, yields 
highly accurate results with precision, recall, and an F1 score of 99%. We validated the robustness of 
the proposed approach using the k-fold cross-validation. The proposed research ensures the detection 
of growth stages with great promise for boosting agricultural productivity and management practices, 
empowering farmers to optimize resource distribution and make informed decisions.
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Smart agriculture, known as precision farming, utilizes the Internet of Things (IoT) techniques to enhance 
agricultural activity by monitoring critical parameters such as weather, soil moisture, and crop health. IoT 
technology, such as wireless sensors and data collection systems to continuously monitor these crucial parameters, 
allows farmers to carry out their activities more efficiently and effectively1,2. It allows farmers to use collected 
data from the field via sensors to increase their effectiveness and efficiency in cultivation3. Precision agriculture 
is applied to maximize crop growth and quality. As a result of this, resource management is optimized. It has 
numerous uses and offers many applications, ranging from pest detection to asset monitoring4. Nevertheless, 
efficiency in growth stage identification has been a substantial concern with smart agriculture due to various 
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challenges. The traditional approaches are unable to offer precise solutions for crop growth stage identification, 
hence resource wastage5.

Wheat, scientifically known as Triticum aestivum L., is one of the most commonly cultivated basic cereal 
crops. Its global consumption has served as a staple for nearly 40% of the global population over 10,000 years. Its 
widespread cultivation and consumption around the world have tremendous implications for the food security 
issue today6. It contains calories, proteins, minerals, and fibers that are consumed, and wheat is also relevant in 
several sectors, including brewing, essential oils, and animal feeds around the globe7. Wheat remains a significant 
agricultural product owing to its high nutritional value, adaptability, and worldwide importance8. Since it is a 
globally significant crop, it is critical and necessary to monitor its health and growth process.

Wheat growth mainly includes plant height, leaf numbers, and tiller and dry matter accumulation. However, 
growth process factors such as wheat varieties, sowing dates, tillage, irrigation frequency, planting density, timing, 
and nitrogen are critical for optimizing yield in wheat cultivation. Nitrogen at 125 kg/ha increased plant height, 
protein content and days to anthesis significantly while decreasing thousand seed-weight, thereby affecting 
wheat development overall9–11. Genetic, physiological, and agronomic interventions, resource preservation 
measures, and precision breeding approaches are required for optimal wheat growth12. Increasing the efficiency 
of inputs, adopting sustainable practices, and applying modern technologies are all critical to maximizing yield 
capacity along with environmental sustainability13.

Technological advances have made it possible to develop models that use image data and hierarchical class 
structures to properly classify crop types and growth stages14. However, minimal research has been conducted on 
identifying growth stages in wheat crops because most studies have concentrated on yield prediction and weed 
identification. Several studies have encountered challenges, such as low accuracy rates, undefined image datasets, 
and training time complexity. Notably, the study15 used convolutional neural networks (CNN) to successfully 
distinguish between barley and wheat growth phases with moderate results for major stages, respectively. In16, 
the MRF-SSM methodology achieved 89% results in accurately determining the growth stages of winter wheat 
using VV polarization from Sentinel-1A time-series images. Similarly, several studies17–19 focused on yield 
estimation, disease, and weed detection.

The domain of wheat crop stage detection is not very well studied in the existing literature. This study intends 
to fill the research gap concerning crop sowing timing on crop development, phenology, and yield based on 
introducing a new framework that combines multiple data sources and predictive modeling. In the current study, 
seven wheat growth stages were covered, including ’Crown Root’, ’Tillering’, ’Mid Vegetative’, ’Booting’, ’Heading’, 
’Anthesis’, and ’Milking’. The analysis concentrates on assessing the influence of the different sowing dates on 
crop yield by frequently capturing the entire crop field during the growth process using imagery, reinforced by 
a set of surveys in the field that record the agronomic parameters to understand the dynamics of crop growth. 
Following this, a wide variety of prediction models are utilized on the dataset that builds up finally and through 
all the growth stages to identify the optimal period to capture crop progression. The suggested framework makes 
the following contributions.

• This study proposed a novel hybrid transfer learning approach MobDenNet, combining the MobileNetV2 
and DenseNet-121 models to procure outstanding results for wheat crop growth stage prediction. The collec-
tion of real image data from wheat fields for crop stage prediction. A dataset of 4,110 images was captured that 
illustrate seven growth stages of wheat crops. The collected data is later used for experiments for improved 
prediction accuracy.

• Preprocessing of collected image data is carried out. The selection of models and data preprocessing, in-
cluding balancing of data and the development of image data augmentation, is a strategy that ensures more 
accurate results.

• Several deep and transfer learning models are optimized and implemented for improved predictive per-
formance. CNN, MobileNetV2, DenseNet-121, InceptionV3, and NASNet-Large models are implemented. 
Model performance was further enhanced using hyperparameter adjustment

• K-fold cross-validation is used for performance validation. In addition, models from existing literature are 
selected for performance analysis. The models’ computational cost is also evaluated.

The subsequent sections of the paper are structured in the following manner: section “Literature review” presents 
a thorough analysis of the available research on forecasting wheat development stages using several stage images. 
A comprehensive explanation of the innovative approach can be found in section “Proposed methodology”. 
Section “Experiments and observations” outlines the experimental evaluations conducted in this study. The 
study’s findings and consequences are detailed in section “Conclusion”.

Literature review
Examining existing studies is essential as it enables the identification of areas that need further comprehension 
and improves the accuracy of computer models used in agriculture. Examining the growth stages of wheat, 
predicting crop yields, and identifying crop diseases is crucial for improving agricultural practices and 
ensuring food security. There has been a lack of extensive research on identifying growth stages. Therefore, we 
also investigate attempts to forecast crop yields and identify diseases in wheat crops. The majority of existing 
literature on the application of machine and deep learning in wheat cultivation emphasizes disease and weed 
detection using images19, determining optimal parameters for yield maximization20, and concentrates on water 
resources21. Several studies15,22–28 can also be found on crop growth stage prediction.

The authors aimed to develop a learning model to identify different stages of wheat growth, focusing on 
being efficient in terms of computation and energy usage22. The approach involved using a model to detect 
wheat growth phases and a dynamic migration algorithm based on reinforcement learning. The innovative 
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dynamic migration algorithm showed a decrease in energy consumption by 128.4% and an increase in efficiency 
by 121.2% when compared to other methods. Further studies could focus on enhancing the model’s precision 
by adjusting hyperparameters and exploring improvements specifically designed for mobile edge computing 
applications in agriculture.

In23, the authors introduced the WE3DS dataset back in 2023, creating a collection of RGB-D images 
specifically designed for identifying types of plants in agricultural environments. The dataset consists of 2568 
images that combine color images with distance maps along, with labeled masks to show the ground truth. These 
images were taken in light using an RGB-D sensor with configured RGB cameras. To train models, they used 
techniques like random forest (RF) and CNN such as U-net and FCN, achieving an intersection over union 
(mIoU) accuracy of up to 70.7%. The main goal of the study was to segment plant species under natural lighting 
conditions using the WE3DS dataset as a reference point for evaluating models trained on RGB, RGB-D, and 
D-data. With a total of 17 plant species included, this dataset marked a step, in simulating real-world crop farming 
scenarios under natural lighting conditions. The researchers also plan to enhance the dataset by annotating a set 
of 3656 RGB-D images in research endeavors.

The main goal24 was to distinguish between the growth stages of wheat and barley by using close-up images 
with convolutional neural networks (ConvNets) and compare their effectiveness with traditional machine 
learning methods. It explored three different approaches: feature extraction combined with a support vector 
machine, training ConvNets from scratch, and training ConvNets with transfer learning. It is worth noting that 
the ConvNet utilizing transfer learning showed the best performance, achieving accuracy rates of 93.5% and 
92.5% for wheat and barley principal growth stage classification tasks. Respectively, future research endeavors 
may center on addressing the identified study limitations and investigating additional machine learning (ML) 
techniques to enhance performance further.

The study25 came up with a way to track wheat lodging that tackles two challenges: calculating lodging 
area and analyzing lodging at different growth stages. The technique suggests using deep learning methods for 
segmentation, quick prediction, and reliable generalization. Specifically, they utilize the SegFormer B1 model 
to determine lodging areas achieving an accuracy rate of 96.56% and showcasing strong generalization skills. 
Notably, the model, trained on a dataset of growth stages, outperforms models trained on single-stage datasets 
with a mIoU of 89.64%. This exceptional performance allows for its use throughout the wheat growth cycle. 
By using drones to capture images of lodged wheat, their approach enables invasive monitoring and precise 
calculation of lodging areas based on image data. This method is well suited for situations requiring real-time 
efficiency and accuracy in disaster monitoring.

The authors explored the identification of winter wheat at growth stages using sensing data analysis in29. 
They utilized Sentinel 2 sensing images to extract features for classification purposes. Two models were created: 
a forest classification model and a deep U-Net semantic segmentation model both leveraging bands from the 
Sentinel 2 images. The best accuracy in detecting winter wheat was achieved during the jointing heading phase, 
with the random forest classification model achieving an accuracy rate of 96.90%. Furthermore, the accuracy 
with two deep learning models for winter wheat extraction based on municipal statistical data reached 96% and 
88%.

The study21 delved into the water requirements, efficiency of water use, crop coefficient, and depletion of 
soil water availability across growth stages of wheat in the New Delhi area. Measurements of evapotranspiration 
were taken using a lysimeter placed within the crop region, while meteorological data was collected from an 
observatory near the experimental farm. The crop coefficient (Kc) was calculated using established formulas and 
relationships considering factors like wilting point, soil bulk density, and depth of the root zone, and it attained 
high values of (1.1–1.2). The highest water usage was noted during the elongation phase, resulting in effects 
on yield when soil water availability dropped by 50% during crucial growth stages. The crop’s productivity was 
negatively impacted, reducing it by as 18% from its maximum yield.

The authors employed machine vision and deep learning techniques in19 for the real-time detection of weeds. 
The data-gathering process involved the acquisition of 6000 images depicting various weed and wheat crop 
scenarios under different weather conditions at the research farm of PMAS-Arid Agriculture University. Through 
the utilization of PyTorch, deep learning models exhibited superior performance compared to TensorFlow, 
yielding higher precision rates for both weed (0.89) and wheat plant (0.91) identification, with inference times 
recorded at 9.43 ms and 12.38 ms per image, respectively, utilizing an NVIDIA RTX2070 GPU. However, it is 
important to note that these inference times were specific to the GPU model and image dimensions used in 
this study and may vary in alternative settings. Moving forward, future research endeavors should explore the 
incorporation of supplementary sensors or data sources further to enhance the accuracy and efficiency of weed 
detection.

The evaluation of how well winter wheat grew using Sentinel-2 data is carried out in26 and compared with 
established standards. Across 75 fields in Ireland and the UK, researchers observed five characteristics of winter 
wheat at crucial growth stages. They developed models to predict crop growth, finding that models tailored for 
growth stages performed better than those covering the season. The results showed promising performance 
overall, with stage models achieving R2 values between 0.72 and 0.87. Future studies could focus on improving 
models for precise monitoring purposes.

The study15 conducted a review on advanced image processing techniques for tracking the growth of cereal 
crops. Those parameters include but are not limited to canopy cover, biomass, leaf area index, chlorophyll 
levels, and growth stages. Image processing methods conforming to the combination of those factors have been 
discussed in the study to find an optimal solution to their extraction from high-resolution images. Moreover, an 
analysis of the current approaches to image processing in the context of cereal crop monitoring has been made 
as it activates multiple hindrances, among which is the lack of proper lighting, camera position, and possible 
obstructions. A comparative analysis of those factors has been implemented in the research to identify the fields 
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for better performance and elevated accuracy. The relevance of research activities before is supported by the 
research on driving factors important for both isotopic measurements and other fields.

The study27 proposed an approach to use agricultural knowledge to feed a network design meant for careful 
monitoring of the crop’s growth during the season. The researchers used a domain-guided neural network 
(DgNN) that has a long short-term memory (LSTM) architecture and an attention mechanism that varies the 
importance with which multiple factors feed the crop, and in this approach was fed using the sensing data from 
Iowa, U.S.A., during the years 2003–2019, accompanied by USDA-collated crop progress reports as a reference, 
and the DgNN model followed specifically corn-growth. In comparison to full dense-only neural network 
structures and the Hidden Markov Models, the DgNN model is outperforming other models. In total, across all 
the growth stages, it achieves a 4.0% better Nash-Sutcliffe efficiency and gets an additional 39% well-similarity 
weeks during the test years. Therefore, the approach can be used on other crops to allow for the near real-time 
examination of the growth stage and provide a basis for future investigations.

In20, the authors resolved to determine productivity with the assistance of synthetic aperture radar (SAR) 
data. For the winter wheat fields at the growth and maturity stages, the RAM time series data is taken for the 
investigation of SAR Sentinel-1 satellites. Their methodology included curves to the SAR time series, studying 
derivatives to pinpoint key stages in crop growth, and examining correlation matrices for predicting yields. 
They found that the day of the year with the VH/VV value correlated with yield (r = −0.56), while a longer 
duration of “full” vegetation showed a positive correlation with yield (r = 0.61). In the period of peak vegetation, 
the essential seasonal variation is (p = 0.042), the midway of growth (p = 0.037), the growing season duration 
is (p = 0.039), and yield (p = 0.016) was perceived. The study observed variations in various growth parameters 
and yields which aligned with existing knowledge of crop phenology. Further research is needed to explore 
uncertainties and the practicality of this approach in agroecosystems.

The study28 worked to predict the maturity dates of winter wheat in the study by combining MODIS LAI 
data with the WOFOST model using a data assimilation approach. They integrated sensing information into 
the WOFOST model to forecast when winter wheat would reach maturity. The WOFOST model was run with 
reinitialized parameters and TIGGE data for weather input. The regional predictions for maturity dates showed 
a high determination coefficient R2 of 0.94 and a low root mean square error (RMSE) of 1.86 days. Future 
studies could focus on improving the data assimilation framework and enhancing the accuracy of maturity date 
forecasts. Similarly,30 introduced a method to detect wheat crops by analyzing MODIS-TERRA MOD13Q1 data 
and applying a noise clustering soft classification technique. They optimized date combinations and vegetation 
index parameters to improve the accuracy of wheat crop classification. Separability analysis was used to refine 
date combinations, followed by noise clustering classification. The resolution of the noise clustering classifier 
parameter was 1.6 × 104 used for the wheat crops identification. Based on the growth stage of the soil-adjusted 
vegetation stages index assessment, the SMA’s result achieved the highest area under the ROC curve for the 
detection of wheat crops.

Table 1 provides a brief overview of the discussed works. It can be seen that previous analyses of wheat crop 
growth stage identification have many limitations in terms of various techniques and systems. Traditional ways 
of observing wheat growth stages are inefficient methods that require a lot of labor and time and are exposed 
to human error. Moreover, most previous research used elementary machine learning models, which perform 
worse than more complex methods in most cases. Furthermore, there has been limited research on advanced 
deep-learning models that incorporate different architectures of transfer learning. Comprehensive details of the 
identified research gaps are provided here.

• The traditional approaches and use of simple remote sensing with basic machine learning models cannot offer 
the level of accuracy and generalization required by practical applications.

• For the most part, no large-scale and formal dataset is dedicated to wheat growth stage classification. Addi-
tionally, available datasets are generally limited in size and scope.

• A major gap identified is the challenge in result performance analysis, especially regarding time complexity 
and accuracy.

• The practical application of these models in agricultural settings is impeded by the absence of farmer-friendly 
real-time tools.

This study aims to overcome these issues by incorporating advanced techniques and modern models, which will 
lead to more accurate and reliable identification of development stages in wheat crops.

Proposed methodology
The research concentrated on identifying the wheat crop growth stage using a comprehensive approach. The 
primary materials used to test the experimental research in this investigation include wheat crop images from 
the region of Southern Punjab, Pakistan. The image detector software based on camera sensors is used to identify 
the growth stages in wheat crops. A total of 4,110 images are obtained from various crops at different stages of 
their growth. These high-resolution images depict the complete journey from the emergence of initial crown 
roots to the final milking stage.

Figure 1 presents the proposed methodological framework based on a standardized dataset of the wheat 
growth phases. The dataset generation process began with gathering an extensive set of images that capture the 
seven stages of wheat crop development. Ensuring that all classes were adequately represented, we explored 
the collected dataset, utilized data augmentation techniques, and addressed class imbalance. Subsequently, the 
dataset is divided into an 80% training and 20% validation portion. Deep and transfer learning methodologies 
are employed to create predictive models that use the training data to identify the wheat crop growth stages, but 
the results are not favorable. Following this training process, a new transfer learning approach, MobDenNet, is 

Scientific Reports |        (2025) 15:11822 4| https://doi.org/10.1038/s41598-025-96332-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 1. Architectural workflow of the proposed wheat crop growth stages recognition methodology.

 

Ref. Year Research aim Techniques Results

22 2023 Identify different stages of wheat growth in terms of computation 
and energy usage

Dynamic migration algorithm 
based on reinforcement learning

Decrease in energy consumption by 128.4% and an 
increase in efficiency by 121.2%

23 2023 Segment plant species under natural lighting conditions using 
the WE3DS dataset

Random Forest and convolutional 
neural networks such as U-net 
and FCN

Achieved an Intersection over Union (mIoU) accuracy 
of up to 70.7%

24 2023 Growth stages of wheat and barley by using close-up images ConvNets with transfer learning Achieved accuracy rates of 93.5% and 92.2.5% for 
wheat and barley

25 2022 Track wheat lodging that tackles two challenges; calculating 
lodging area and analyzing lodging at different growth stages SegFormer B1 model Outperformed models trained on single-stage datasets 

with an Intersection over Union (mIoU) of 89.64%

29 2022 Identification of winter wheat, at growth stages using sensing 
data analysis

Forest classification model and a 
deep U-Net semantic segmentation 
model

Furthermore, the accuracy with two Deep learning 
models for winter wheat extraction based on municipal 
statistical data reached 96% and 88%

19 2022 Employ machine vision and deep learning techniques for the 
real-time detection of weeds amidst wheat crops GPU model Precision rates for both weed (0.89) and wheat plant 

(0.91) identification

26 2022 To evaluate how well winter wheat grew using Sentinel-2 data Phenology-specific models The results showed promising performance overall with 
stage models achieving R2 values between 0.72 and 0.87

15 2022 Review on advanced image processing techniques for tracking 
the growth of cereal crops

Image processing and Deep 
learning

DL methods proven effective in plant growth 
monitoring

27 2021 Use agricultural knowledge to feed a network design meant for 
careful monitoring of the crop’s growth during the season

Domain Guided Neural Network 
that has a Long Short-Term 
Memory architecture

In total, across all the growth stages, it achieves a 4.0% 
better Nash-Sutcliffe efficiency and gets an additional 
39%

20 2020 Determined productivity with the assistance of SAR (Synthetic 
Aperture Radar) data Machine Learning methodology The growing season duration is (p = 0.039) and yield (p 

= 0.016) was perceived

28 2020 Predict the maturity dates of winter wheat in their study by 
combining MODIS LAI data WOFOST model Showed a high determination coefficient R2  of 0.94 

and a low root mean square error (RMSE) of 1.86 days

30 2015 Detect wheat crops by analyzing MODIS-TERRA MOD13Q1 
data ROC curve analysis SMA’s result achieved the highest area under the ROC 

curve for the detection of wheat crops

21 2004
Water requirements, the efficiency of water use, crop coefficient, 
and depletion of soil water availability, across growth stages of 
wheat

The crop coefficient (Kc) was 
calculated using established 
formulas and relationships

It attained high values of (1.1–1.2). The highest water 
consumption was 50% observed during elongation

Table 1. The summary and research limitations analysis of conducted literature for predicting growth stages of 
wheat crops through image detection.

 

Scientific Reports |        (2025) 15:11822 5| https://doi.org/10.1038/s41598-025-96332-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


introduced, and the model is fine-tuned to produce highly accurate detection of the wheat crop stages. The steps 
for the proposed methodology for the identification of wheat crop growth stages are as follows.

• Step 1: The initial phase involves data collection and preprocessing of the image data, which includes balanc-
ing the data and implementing image data augmentation strategies. This ensures more accurate alignment 
and improves the quality of the dataset for further analysis.

• Step 2: The dataset is then divided into two portions: a training set and a testing set (80:20) ratio. The training 
set is used to train applied deep and transfer learning models, while the testing set is employed to evaluate the 
models’ performance and generalization capabilities.

• Step 3: The performance of five models, CNN, MobileNetV2, DenseNet-121, InceptionV3, and NAS-
Net-Large, is evaluated for predicting the wheat growth stages. This step helps identify the most effective 
models for the task.

• Step 4: This research proposed a hybrid transfer learning method called MobDenNet, which combines the 
frameworks of MobileNetV2 and DenseNet-121. This novel approach is developed to achieve outstanding 
results in growth stage prediction.

• Step 5: The evaluation of each model is conducted using appropriate metrics such as accuracy, precision, 
recall, and F1 score. This step ensures the effectiveness and reliability of the models in accurately identifying 
the growth stages of wheat crops.

• Step 6: Model performance is further enhanced using hyper-parameter tuning and k-fold cross-validation 
methods while being mindful of computational costs. These techniques improved model precision and ro-
bustness.

Phase 1: Wheat crop growth stage image collection
This research created a comprehensive dataset by capturing the seven stages of wheat growth in the time frame 
between November 2023 and April 2024. The wheat field under consideration is situated in Khanpur, Southern 
Punjab, Pakistan, and spans a land of 10 acres. A total of 4,110 images were taken during morning and evening 
sessions. These photos provide a detailed view of each stage’s features, as the camera positions were maintained 
at heights of 2–4 feet. The photos were captured using an iPhone 14 Pro. It comes with a 48-megapixel main 
camera with an f/1.78 aperture and a whopping 48MP 1/1.28 sensor with Quad-Bayer color filters, giving the 
images high resolution.

This research leverages a corpus of images symbolizing the seven distinct stages of development for 
experimental usages, as depicted in Fig.  2. The dataset encompasses 4,110 files, organized into seven stages, 
’Crown root initiation’, ’Tillering’, ’vegetative growth’, ’Booting’, ’Heading’,’ Anthesis’, and ’Milking’. A thorough 
scrutinization uncovered a variance in the number of images across these stages. This imbalance, accentuated 
in Fig.  2, underscores the necessity for techniques to address this issue to maximize accuracy and overall 
performance.

The original dataset is composed of 4,110 images. The image counts for each class are as follows: Crown root 
478, Tillering 1306, Mid vegetative phase 645, Booting 272, Heading 536, Anthesis 417, and Milking 456, the 
dataset is highly imbalance as shown in Fig. 3.

Fig. 2. Sample images from collected wheat crop image data.
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Phase 2: Image preprocessing and data augmentation
To mitigate the data imbalance issue, data augmentation31 is used in this study. Data augmentation, which 
involves modifying the existing data in a variety of ways to increase the diversity and size of a dataset employing 
various parameters, as explained in Table 2.

The data augmentation technique is applied to the growth stages we have developed and gathered, which 
were, in particular, we did not apply the data augmentation to the Tillering and Mid Vegetative stages since 
they already have a sizeable number of images. As a result of the augmentation process, the total number of 
images with augmentation data became 4496 to accommodate the balance of five classes as illustrated in Fig. 4. 
The tillering stage has 1,306 images. Hence, for the selected study, the strategy used approximately 650 images 
from the Tillering stage. After augmentation, image counts for each five classes are as follows: Crown root 640, 
Booting 646, Heading 639, Anthesis 639, and Milking 640. Therefore, this extensive data augmentation process 
improves the balance of the dataset and its representative nature, which in turn improves the robustness and 
generalization capabilities of the models.

Phase 3: Image data splitting
Splitting datasets into subsets is fundamental in supervised machine learning as it facilitates model training and 
performance assessment. The 80:20 splitting ratio is used as the study split image data into 80% for training and 
20% for testing. First, the training subset is used to fit parameters and improve the model learning potential. 

Fig. 4. The target class images data distribution analysis after augmentations.

 

Augmentation parameters Values

Rotation range 0

Shear range 0.2

Fill mode Nearest

Horizontal flip True

Vertical flip False

ZCA whitening False

Brightness range (1, 2)

Table 2. Analysis of data augmentation parameters and its values.

 

Fig. 3. Image data of wheat crop distribution analysis done with their target label.
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Second, the test subset is statistically unbiased and assesses how the machine will perform using new data unseen 
before. Therefore, the test subset offers an objective metric of the machine generalization while maintaining 
overfitting.

Phase 4: Applied transfer learning and artificial intelligence techniques
In this section, we present deep and transfer learning techniques utilized in the study. Transfer learning32 
comprises pre-trained models applied to make predictions. In other words, an existing pre-learned feature helps 
to make an accurate prediction. The methods of transfer learning-based fine-tuning use a pre-existing trained 
neural network by training most of the layers of the network with the new dataset. Also describes the details of 
the employed methods in growth stage classification, such as the configuration parameters and the structural 
parameters of the neural networks.

Artificial intelligence in agriculture has already become a new word in precision farming33. Thus, an example 
of predicting the growth stages of wheat crops is a distribution of the vital aspects of crop management and 
cultivation. In the future, the combination of the forenamed practices with AI can become a key development34–38. 
Therefore, farmers would be able to apply innovations already developed to the hard-to-overcome cycle of wheat 
cultivation.

Convolutional neural network
The application of CNNs39 in the field of agriculture, specifically for predicting the growth stages, has proven 
to be an exceedingly potent approach. This methodology encompasses analyzing images that document the 
differing stages of crop maturation. The architecture of the CNN leveraged in this investigation is depicted in 
detail in Fig. 5. The model architecture begins with a Conv2D layer of 16 filters and ReLU activation, resulting 
in an output shape of (None, 222,222,16). This is further processed by a flattened layer that reshapes the output 
into (None, 790272). The model ends with a final output layer of 7 units with softmax activation for classification. 
The total parameters of the model are 5,531,911.

MobileNetV2
MobileNetV2 stands as an effective and lightweight convolutional neural network structure tailored for image 
classification tasks40, notably suitable for mobile and embedded systems facing constraints in computational 
resources. It has inverted residuals and linear bottlenecks, which increase efficiency while decreasing the number 
of parameters for performance; making it ideal for resource-constrained environments. Using fewer channels in 
bottleneck layers helps inverted residuals to cut down on computation. Meanwhile, model efficiency is preserved 
by linear bottlenecks through the application of linear activation functions. It serves as a cornerstone in the 
development of lightweight and efficient models for computer vision applications on mobile platforms.

As shown in Fig. 5, the MobileNetV2 model parameter configuration and layer architecture have also been 
analyzed. The output shape of the input layer is (None, 224, 224, 3) which is followed by a standard convolutional 
layer of CNN. Several inverted residual blocks are there in it that use a linear bottleneck, shortcut connections, 
and the expansion layer introduced to make the information flow easier and increase the input channels before 
applying to the following depthwise convolutions. The network ends with an output layer where the number 
of parameters is 1799, and a fully connected layer with softmax activation is used here for a classification task.

Fig. 5. The layers architecture analysis of applied transfer learning models.
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DenseNet-121
The DenseNet-121 architecture is a CNN41 that features dense connections between its layers, enabling access 
to the feature maps of all the preceding layers. This structure ensures optimal feature propagation and reuse 
and contributes to solutions to the vanishing gradient problem. The DenseNet-121 architecture unequivocally 
integrates 121 layers, rendering it a blend of complexity and computational efficiency, which is why it is optimal 
for many computer vision tasks, including image classification, and demonstrates competitive performance 
compared to other popular architectures.

The DesnseNet-121 model’s parameter configuration and layer architecture analysis are displayed in Fig. 5. 
The output shape of the input layer is( None,224,224,3 ) followed by the DenseNet base layer final output shape 
of (None, 7, 7, 1024). Then, the ReLU activation function leads into our final output layer with 7 units and 
softmax activation for classification tasks.

NASNet-Large
NASNet-Large is a deep CNN5 model primarily used for more complicated tasks and bigger datasets in computer 
vision. Generally, NASNet Large achieves comparatively greater performance on more intricate tasks and larger 
datasets, such as ImageNet, than the base NASNet model, but at the cost of more computing time and larger 
model complexities.

The NASNet-Large model’s parameter configuration and layer architecture analysis are displayed in Fig. 5. 
The initial layer accepts input arrays of shape (None, 224, 224, 3) and passes them to a convolutional layer, 
producing feature maps of shape (None, 111, 111, 96). The bulk of the network consists of the complex NASNet 
Large base architecture containing many layers transforming the representations into myriad higher-level 
feature maps. Ultimately, a GlobalAveragePooling2D layer reduces these final feature maps into a single vector 
fed into a dense layer of 32 units using a rectified linear unit (ReLU). A concluding dense output layer of 7 units 
with softmax activation then performs the classification task.

InceptionV3
An inception V3 is a more powerful deep CNN crafted to perform image classification tasks with maximum 
efficiency. It is designed to produce accurate performance with a significantly reduced computational demand as 
compared to many other network architectures.

The InceptionV3 model’s parameter configuration and layer architecture have also been analyzed in Fig. 5. 
The first layer gives an output shape of (None, 224, 224, 3). This is followed by a 32-filter Conv2D layer with ReLU 
activation with an output shape of (None, 111,111,32). Then, a batch normalization layer is applied, followed by a 
GlobalAveragePooling2D layer. Then, a dense layer with 1024 units and ReLU activation is incorporated. Lastly, 
a final output layer comprising 7 units uses the softmax activation function for the classification task.

Phase 5: Novel hybrid transfer learning-based proposed approach
This study introduces a novel approach, MobDenNet, which combines the architectural layers of both 
MobileNetV2 and DenseNet-121 transfer learning-based models. This marks the first instance of utilizing a 
hybrid transfer learning network design for the detection of wheat crop growth stages. By merging MobileNetV2 
and DenseNet-121 layers, the model architecture aims to effectively capture patterns from historical data and 
generalize well to unseen data instances. We meticulously analyze the architecture and configuration parameters 
of the proposed model.

The integration of MobileNetV2 and DenseNet-121 in the hybrid MobDenNet model is a deliberate design 
choice aimed at harnessing the unique strengths of both architectures.

• MobileNetV2 contributes its lightweight, efficient operations, making it ideal for initial feature extraction in 
resource-constrained environments.

• Meanwhile, DenseNet-121 complements this by focusing on deep feature reuse and enhanced gradient flow, 
ensuring the model captures complex and nuanced patterns effectively.

Rather than introducing inefficiencies, this hybrid approach balances efficiency and performance by strategically 
assigning computational resources to different layers based on their functional requirements. MobileNetV2’s 
simplicity enables quick and efficient preliminary processing, while DenseNet-121 ensures robust feature 
extraction without compromising the model’s ability to generalize.

Empirical results demonstrate that MobDenNet achieves a superior trade-off between computational 
efficiency and predictive accuracy compared to standalone architectures. This synergy validates the compatibility 
of the two design philosophies and underscores the hybrid model’s adaptability to diverse tasks, offering both 
resource efficiency and high performance. We appreciate your feedback and believe this perspective strengthens 
the justification of our approach.

Table 3 provides a detailed breakdown of the configuration parameters for the proposed model, outlining the 
units and settings employed during model construction. Additionally, Fig. 6 visually illustrates the architecture 
analysis, showcasing the flow of wheat crop growth stage detection image data from input to prediction layers 
using the proposed approach. The model architecture leverages a combination of pooling, dropout, flatten, 
and fully-connected layers to realize this novel hybrid design. Algorithm  1 shows the flow of the proposed 
MobDenNet model.
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Algorithm 1. Proposed MobDenNet approach algorithm.

In the proposed network, initially, the input image is processed through the MobileNetV2 architecture, 
which is a series of depthwise separable convolutions. The output of MobileNetV2 is a feature map with a shape 
of (None, 4, 4, 1280). Then, the input image is passed through the DenseNet-121 architecture, which is a densely 
connected convolutional network. The output of DenseNet-121 is a feature map with a shape of (None, 4, 4, 

Fig. 6. Architectural layers flow of our proposed approach.

 

Sr no. Layers Unit Activation function Output shape Parameters

1 input_3 None None (None, 128, 128, 3) 0

2 mobilenetv2_1.00_128 1280 RELU (None, 4, 4, 1280) 2257984

3 Densenet121 1024 RELU (None, 4, 4, 1024) 7037504

4 Concatenate 2304 None (None, 4, 4, 2304) 0

5 Flatten 36864 None (None, 36864) 0

6 Dropout 0.2 None (None, 36864) 0

7 Dense 7 Softmax (None, 7) 258055

Table 3. The novel proposed MobDenNet model configuration parameters analysis.
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1024). As shown in Fig. 6, these two feature maps are concatenated along the channel dimension, resulting in a 
combined feature map with a shape of (None, 4, 4, 2304). The concatenated feature map is flattened into a vector 
of size (None, 36864). A dropout layer with a rate of 0.2 is used in this vector to reduce overfitting. A dense layer 
with 7 units and a softmax activation function is utilized as the last output layer for classification tasks.

The proposed MobDenNet model provides benefits over current cutting-edge models. Its structure, 
MobDenNet, has been carefully fine-tuned leading to decreased intricacy in comparison to models. Upon 
examination, it is clear that the suggested model is effective in handling data processing tasks. The incorporation 
of two sets of transfer learning network layers in the suggested model has produced scores for identifying wheat 
crop growth phases.

Phase 6: Hyperparameter tuning across neural network models
Hyperparameter optimization is an essential step of any neural network technique, and in the wheat growth 
stage prediction, it is more important. The hyperparameter tuning process involves a recursive cycle of training 
and testing to identify the optimal hyperparameters. A k-fold cross-validation technique is employed to ensure 
the selection of the best-performing parameters. A systematic approach is adopted to meticulously explore and 
adjust key hyperparameters, including the learning rate, batch size, and the number of hidden layers, prior to 
model training. Based on the implementations, the hyperparameter tuning analysis is presented in Table 4. The 
goal is to pinpoint the setup that could deliver more accurate outcomes. Following the implementation, we used 
k-fold cross-validation and iterative training and testing processes to identify the hyperparameters that suit our 
proposed approach.

Experiments and observations
In this section, we delve into a comprehensive examination of the research outcomes, accompanied by in-
depth discussions. We also provide a comparative depiction of the experimental setup and performance results 
based on image data of wheat crops at varying growth stages. The results indicate the potential utility of these 
models proved as a valuable asset for agricultural practitioners, facilitating the identification of stages and the 
implementation of targeted interventions to enhance outcomes.

Experimental setup
The experimental environment is constructed using a cloud-based Notebook, namely Google Colab, for this 
study. In measuring the efficacy of neural network approaches, we used accuracy, F1, precision, and recall as 
the performance indicators, which served as the benchmarks for gauging the effectiveness of the models for 
recognizing wheat crop growth stages. Table 5 highlights the aspects of the environment that were used in the 
study.

Results with augmentation after data splitting
To ensure the reliability of model evaluation, the dataset was first split into training and testing subsets 
using an 80:20 ratio. Following the split, data augmentation was applied exclusively to the training set, with 
no augmentation performed on the testing set. Results in Table 6 indicate that the proposed hybrid model, 
MobDenNet, employed after augmentation, achieved an average accuracy of 94% in identifying wheat crop 
growth stages. The evaluation demonstrates strong performance across all growth stages, with particularly high 
precision and recall for classes such as “Booting” and “Milking.”

Specifications Values

Programming language Python 3.0

Environmental model TensorFlow/Keras

CPU MHz 3.60 GHz

RAM 32 GB

Cache 12 MB

CPU Cores 8 cores

Table 5. The experimental environment analysis.

 

Hyperparameters Values

Optimizer Adam

Loss function Categorical cross entropy

Metrics Accuracy

Activation Softmax

Epochs 10,20

Validation splits 0.1

Table 4. Analysis of hyperparameter tuning implemented across all neural network techniques.
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The confusion matrix results for the MobDenNet model demonstrate its effectiveness in accurately 
classifying wheat growth stages, even with data augmentation applied only to the training subset, as depicted 
in Fig. 7. The model excelled in identifying stages like “Crown Root” and “Milking,” achieving high accuracy 
with minimal misclassifications. However, slight errors were noted in stages such as “Tillering” and “Mid 
Vegetative Phase,” though these did not significantly impact overall performance. Compared to baseline models 
like CNN, NASNet-Large, and MobileNetV2, MobDenNet showed substantially reduced false positives and 
misclassifications, particularly for challenging stages like “Crown Root” and “Milking.” With an overall accuracy 
of 94%, the model’s performance, aided by exclusive data augmentation post-split, reflects its robustness and 
suitability for real-world agricultural applications requiring precise and scalable predictions.

The training and validation curves in Fig. 8 demonstrate the MobDenNet model’s significant improvement 
over 40 epochs. Starting with moderate performance, the model’s accuracy increased from 17.03 to 89.98% for 
training and from 34.91 to 94.18% for validation. The decrease in training and validation loss, from 6.5 to 0.3 
and from 1.0 to 0.16, respectively, reflects the model’s ability to generalize well to unseen data. While there were 
some fluctuations in the middle epochs, indicating fine-tuning, the model stabilized by the final epochs. With a 
final validation accuracy of 94.18% and a low validation loss, the results confirm the model’s effectiveness and 
robustness for precise and scalable agricultural applications.

The comparative analysis of the neural network architectures, as illustrated in Fig. 9, reveals the superior 
performance of the proposed MobDenNet model, which combines MobileNetV2 and DenseNet-121. This hybrid 
model outperformed other networks such as MobileNetV2, DenseNet-121, Inception V3, and NASNet-Large, all 
of which achieved moderate accuracies ranging from 72 to 95%, MobDenNet yielded a high accuracy of 99%. 
These initial results were obtained from a dataset where data augmentation was applied prior to splitting the 
training and testing sets. For clearer and more reliable outcomes, further augmentation was applied exclusively 
to the training data, which was then injected into the proposed MobDenNet model. This refined approach 
resulted in an impressive 94% accuracy on unseen test data.

The significant improvement in accuracy with the MobDenNet model highlights its superior generalization 
capability across wheat growth stages. By applying augmentation exclusively to the training set, we not only 
preserved the integrity of the testing data but also enhanced the model’s ability to handle data variations 
effectively. This method mitigates overfitting, leading to better performance on unseen data compared to models 

Fig. 7. Analysis of the confusion matrix validation of applied proposed technique.

 

Class Precision Recall F1-score

Crown root 0.90 0.91 0.91

Tillering 0.87 0.86 0.86

Mid vegetative phase 0.94 0.90 0.92

Booting 0.96 0.94 0.95

Heading 0.91 1.00 0.95

Anthesis 0.99 0.92 0.95

Milking 0.96 0.99 0.98

Average accuracy 0.94

Table 6. The performance generalization of the proposed model by applying data augmentation exclusively to 
the training set after splitting the dataset.
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that only relied on initial augmentation techniques. The 94% accuracy thus represents a notable advancement, 
offering a more precise, reliable, and scalable solution for agricultural applications than other existing deep 
learning models.

Analysis of runtime computational complexity
The proposed MobDenNet model demonstrates computational efficiency and consistency over 40 epochs as 
shown in Table 7. Training times progressively decreased from 2.71 s in the first 10 epochs to 2.02 s by epochs 
11–20, stabilizing between 2.03 and 2.25  s for later epochs. This highlights the model’s resource efficiency, 
adaptability, and robust performance during extended training.

Training epochs Computational time (s)

1–10
2.71

2.29

11–20
2.04

2.02

21–30
2.15

2.03

31–40
2.07

2.25

Table 7. The assessment of run-time computational complexity of employed transfer learning proposed 
technique over 40 epochs.

 

Fig. 9. Performance comparison analysis of all employed techniques.

 

Fig. 8. Analysis of models progress across 40 epochs, covering both training and validation accuracy and loss.
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K-fold-based cross-validation results
For validation purposes, we utilized the k-fold cross-validation methodology with 5 folds. The efficacy of the 
proposed approach has been evaluated through k-fold cross-validation, and the results are provided in Table 8. 
The hybrid model is validated five-fold. Among them, the current research had got 97% average accuracy with a 
0.12 loss score in our proposed model. Based on this cross-validation, one can infer that the proposed approach 
can successfully classify the growth stages of the wheat crops in a generalized way.

State-of-the-art studies comparisons
Table 9 presents the performance comparison of recent state-of-the-art studies and the newly proposed method. 
To make a fair comparison, only studies conducted between 2020 and 2024 are included. The most recent 
studies were based on deep learning, where the highest performance by previous studies is 93%, which is quite 
moderate. The proposed method is based on the transfer learning method so that the performance is enhanced. 
In comparison, all the studies have done their research on wheat maturity dates or stages except these23,29, which 
focused on the segmentation of plant spices and tracking wheat lodging. The proposed MobDenNet method 
uses architectural layers of two Transfer learning methods MobileNetV2 and DenseNet-121, which classified the 
seven growth stages of wheat with 94% accuracy. The current study has the highest performance compared to 
state-of-the-art techniques.

Study limitations and discussions
The dataset used in this research was indeed collected from a single geographic location, as our focus was on 
conducting initial experimental research to validate the methodology. We recognize the importance of geographic 
diversity to enhance the robustness and applicability of the model. Therefore, in future work, we plan to expand 
our dataset collection to include diverse geographic locations across the globe. This will allow us to evaluate the 
model’s performance in varying environmental and agronomic conditions, ensuring broader applicability and 
reliability. Regarding the model’s generalizability, we have taken measures to mitigate this limitation by ensuring 
that the dataset captures images with diverse features and details that are representative of the crop at various 
growth stages. As the same crop exhibits similar growth patterns across different geographic regions, our dataset 
includes comprehensive visual features essential for accurate crop stage prediction.

We addressed the potential risk of overfitting and inflated performance metrics due to image repetition 
by employing the k-fold cross-validation technique during model evaluation. This approach ensured that the 
dataset was divided into multiple folds, with the model being trained on different subsets and tested on the 
remaining ones. The validation results demonstrated that the model maintained consistent performance across 
all folds, indicating that it successfully learned generalizable features rather than merely memorizing repeated 
patterns specific to the dataset. These results confirm the model’s generalization capability for diverse climatic 
and agricultural conditions.

Future work
In future work, we intend to increase the diversity of the dataset by adding images from different geographical 
zones and environments to improve the generalization capability of the MobDenNet model. We also like to 
examine how incorporating more sophisticated machine learning methods, specifically ensemble learning 
and attention mechanisms, enhances performance results and time complexities. Through collaboration with 
agriculture experts, the goal is to develop applications that are readily available and smart enough to identify 
wheat growth stages in real-time, helping farmers by responding on a timely basis and leading to better decisions 
and resource management.

Reference Year Learning type Approach Accuracy (%)
16 2022 Machine learning Markov Random Field and Spectral Similarity Measure 89
25 2022 Deep learning SegFormer B1 89
23 2023 Deep learning U-Net and FCN 70
24 2023 Transfer learning ConvNets with transfer learning 93

Proposed 2024 Transfer learning Novel MobDenNet 94

Table 9. The performance comparison of the proposed approach with state-of-the-art studies.

 

K-folds Accuracy score Loss score

Fold 1 0.98 0.03

Fold 2 0.97 0.10

Fold 3 0.96 0.17

Fold 4 0.96 0.11

Average 97 0.12

Table 8. The performance validation analysis of the novel hybrid approach is performed using k-fold.
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Conclusion
This study proposed and validated the performance of a novel hybrid deep learning framework MobDenNet 
with an exceptional accuracy of 99% to distinctly recognize seven wheat crop growth stages. The newly curated 
image dataset contains 4110 images that represent seven growth stages ’Crown Root’, ’Tillering’, ’Mid Vegetative’, 
’Booting’,’ Heading’, ’Anthesis’, and ’Milking’. This study implemented data preprocessing, including advanced data 
augmentation techniques, to address the data imbalance challenge. In addition, advanced classification methods 
MobileNetV2, DenseNet-121, NASNet-Large, InceptionV3, and convolutional neural networks are employed. 
However, MobDenNet outperforms deep and transfer learning models using MobileNetV2 and DenseNet-121 
architecture synergistically combined. Furthermore, to validate that the approach is robust and works correctly, 
k-fold cross-validation is performed. The proposed approach exhibited exceptional performance in comparison 
to existing state-of-the-art studies. Additionally, the computational complexity is determined. The functioning 
of MobDenNet has the potential to influence novel farming methods which can lead to decision-making and 
resource utilization more optimally.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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