Propuesta de implementación de un sistema de gestión ambiental, basado en la norma ISO 14001, en una industria de cosméticos de la ciudad de Guayaquil, Ecuador, 2021.
Tesis
Materias > Ingeniería
Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Cerrado
Español
Hoy en día, se ha comprobado en muchos trabajos de investigación que la adopción de un Sistema de Gestión Ambiental (SGA) puede ofrecer a las empresas una serie de beneficios a nivel de desempeño y competitividad a la vez que gestionan de forma integral los riesgos organizacionales que pudieran afectar la continuidad del negocio, pero especialmente los riesgos ambientales originado de sus operaciones. Es bien conocido que la industria cosmética es una de las es una de las más grandes a nivel mundial y en Ecuador no es la excepción. Los hábitos de consumos, estándares de belleza y la variedad de opciones disponibles en el mercado, la hace una de las más contaminantes, así, 98 de cada 100 ecuatorianos tiene al menos cinco productos cosméticos. Dada la necesidad de contribuir con los Objetivos de Desarrollo Sostenible (ODS) mundiales de manera local, reducir los niveles de impactos ambientales actuales, contribuir a una mejora calidad de vida de la comunidad y buscar el busca el uso eficiente de los recursos naturales se propuso una guía práctica para la implementación de un SGA basado en los requisitos de la norma internacional ISO 14001 para el sector cosmético. Basado en los requisitos de norma y experiencia profesional del autor, esta propuesta consideró cuatro fases principales: 1) diagnóstico ambiental de la industria de cosméticos, 2) Identificación de los procesos claves y sus interrelaciones, 3) Evaluación de los impactos ambientales y 4) elaboración de la guía para la implementación de un Sistema de Gestión Ambiental ISO 14001. Una vez llegado a la última fase, la guía de implementación se construye con los requisitos claves y de carácter obligatorio, asegurando que el SGA se realice con éxito y forma sencilla, flexible y en corto tiempo. Cabe indicar esta guía se podría adaptar a otros giros de negocios independientemente del tamaño de estos. Futuros trabajos podrían en práctica esta propuesta y adaptarla a Sistemas de Gestión trinorma o multinorma.
metadata
Estrella Matamoros, Roberto German
mail
estrellaroberto-77@hotmail.com
(2022)
Propuesta de implementación de un sistema de gestión ambiental, basado en la norma ISO 14001, en una industria de cosméticos de la ciudad de Guayaquil, Ecuador, 2021.
Masters thesis, SIN ESPECIFICAR.
Resumen
Hoy en día, se ha comprobado en muchos trabajos de investigación que la adopción de un Sistema de Gestión Ambiental (SGA) puede ofrecer a las empresas una serie de beneficios a nivel de desempeño y competitividad a la vez que gestionan de forma integral los riesgos organizacionales que pudieran afectar la continuidad del negocio, pero especialmente los riesgos ambientales originado de sus operaciones. Es bien conocido que la industria cosmética es una de las es una de las más grandes a nivel mundial y en Ecuador no es la excepción. Los hábitos de consumos, estándares de belleza y la variedad de opciones disponibles en el mercado, la hace una de las más contaminantes, así, 98 de cada 100 ecuatorianos tiene al menos cinco productos cosméticos. Dada la necesidad de contribuir con los Objetivos de Desarrollo Sostenible (ODS) mundiales de manera local, reducir los niveles de impactos ambientales actuales, contribuir a una mejora calidad de vida de la comunidad y buscar el busca el uso eficiente de los recursos naturales se propuso una guía práctica para la implementación de un SGA basado en los requisitos de la norma internacional ISO 14001 para el sector cosmético. Basado en los requisitos de norma y experiencia profesional del autor, esta propuesta consideró cuatro fases principales: 1) diagnóstico ambiental de la industria de cosméticos, 2) Identificación de los procesos claves y sus interrelaciones, 3) Evaluación de los impactos ambientales y 4) elaboración de la guía para la implementación de un Sistema de Gestión Ambiental ISO 14001. Una vez llegado a la última fase, la guía de implementación se construye con los requisitos claves y de carácter obligatorio, asegurando que el SGA se realice con éxito y forma sencilla, flexible y en corto tiempo. Cabe indicar esta guía se podría adaptar a otros giros de negocios independientemente del tamaño de estos. Futuros trabajos podrían en práctica esta propuesta y adaptarla a Sistemas de Gestión trinorma o multinorma.
Tipo de Documento: | Tesis (Masters) |
---|---|
Palabras Clave: | Sistema de Gestión Ambiental, norma ISO 14001, industria cosmética, gestión ambiental en la industria cosmética, certificación ambiental |
Clasificación temática: | Materias > Ingeniería |
Divisiones: | Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster |
Depositado: | 02 Nov 2023 23:30 |
Ultima Modificación: | 02 Nov 2023 23:30 |
URI: | https://repositorio.unib.org/id/eprint/1546 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a href="/17844/1/frai-1-1572645.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A systematic review of deep learning methods for community detection in social networks
Introduction: The rapid expansion of generated data through social networks has introduced significant challenges, which underscores the need for advanced methods to analyze and interpret these complex systems. Deep learning has emerged as an effective approach, offering robust capabilities to process large datasets, and uncover intricate relationships and patterns. Methods: In this systematic literature review, we explore research conducted over the past decade, focusing on the use of deep learning techniques for community detection in social networks. A total of 19 studies were carefully selected from reputable databases, including the ACM Library, Springer Link, Scopus, Science Direct, and IEEE Xplore. This review investigates the employed methodologies, evaluates their effectiveness, and discusses the challenges identified in these works. Results: Our review shows that models like graph neural networks (GNNs), autoencoders, and convolutional neural networks (CNNs) are some of the most commonly used approaches for community detection. It also examines the variety of social networks, datasets, evaluation metrics, and employed frameworks in these studies. Discussion: However, the analysis highlights several challenges, such as scalability, understanding how the models work (interpretability), and the need for solutions that can adapt to different types of networks. These issues stand out as important areas that need further attention and deeper research. This review provides meaningful insights for researchers working in social network analysis. It offers a detailed summary of recent developments, showcases the most impactful deep learning methods, and identifies key challenges that remain to be explored.
Mohamed El-Moussaoui mail , Mohamed Hanine mail , Ali Kartit mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Isabel de la Torre Díez mail ,
El-Moussaoui
<a href="/17831/1/s43856-025-01020-4.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Association between blood cortisol levels and numerical rating scale in prehospital pain assessment
Background Nowadays, there is no correlation between levels of cortisol and pain in the prehospital setting. The aim of this work was to determine the ability of prehospital cortisol levels to correlate to pain. Cortisol levels were compared with those of the numerical rating scale (NRS). Methods This is a prospective observational study looking at adult patients with acute disease managed by Emergency Medical Services (EMS) and transferred to the emergency department of two tertiary care hospitals. Epidemiological variables, vital signs, and prehospital blood analysis data were collected. A total of 1516 patients were included, the median age was 67 years (IQR: 51–79; range: 18–103) with 42.7% of females. The primary outcome was pain evaluation by NRS, which was categorized as pain-free (0 points), mild (1–3), moderate (4–6), or severe (≥7). Analysis of variance, correlation, and classification capacity in the form area under the curve of the receiver operating characteristic (AUC) curve were used to prospectively evaluate the association of cortisol with NRS. Results The median NRS and cortisol level are 1 point (IQR: 0–4) and 282 nmol/L (IQR: 143–433). There are 584 pain-free patients (38.5%), 525 mild (34.6%), 244 moderate (16.1%), and 163 severe pain (10.8%). Cortisol levels in each NRS category result in p < 0.001. The correlation coefficient between the cortisol level and NRS is 0.87 (p < 0.001). The AUC of cortisol to classify patients into each NRS category is 0.882 (95% CI: 0.853–0.910), 0.496 (95% CI: 0.446–0.545), 0.837 (95% CI: 0.803–0.872), and 0.981 (95% CI: 0.970–0.991) for the pain-free, mild, moderate, and severe categories, respectively. Conclusions Cortisol levels show similar pain evaluation as NRS, with high-correlation for NRS pain categories, except for mild-pain. Therefore, cortisol evaluation via the EMS could provide information regarding pain status.
Raúl López-Izquierdo mail , Elisa A. Ingelmo-Astorga mail , Carlos del Pozo Vegas mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Ancor Sanz-García mail , Francisco Martín-Rodríguez mail ,
López-Izquierdo
<a class="ep_document_link" href="/17838/1/s41598-025-02008-9.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Botnet detection in internet of things using stacked ensemble learning model
Botnets are used for malicious activities such as cyber-attacks, spamming, and data theft and have become a significant threat to cyber security. Despite existing approaches for cyber attack detection, botnets prove to be a particularly difficult problem that calls for more advanced detection methods. In this research, a stacking classifier is proposed based on K-nearest neighbor, support vector machine, decision tree, random forest, and multilayer perceptron, called KSDRM, for botnet detection. Logistic regression acts as the meta-learner to combine the predictions from the base classifiers into the final prediction with the aim of increasing the overall accuracy and predictive performance of the ensemble. The UNSW-NB15 dataset is used to train machine learning models and evaluate their effectiveness in detecting cyber-attacks on IoT networks. The categorical features are transformed into numerical values using label encoding. Machine learning techniques are adopted to recognize botnet attacks to enhance cyber security measures. The KSDRM model successfully captures the complex patterns and traits of botnet attacks and obtains 99.99% training accuracy. The KSDRM model also performs well during testing by achieving an accuracy of 97.94%. Based on 3, 5, 7, and 10 folds, the k-fold cross-validation results show that the proposed method’s average accuracy is 99.89%, 99.88%, 99.89%, and 99.87%, respectively. Further, the demonstration of experiments and results shows the KSDRM model is an effective method to identify botnet-based cyber attacks. The findings of this study have the potential to improve cyber security controls and strengthen networks against changing threats.
Mudasir Ali mail , Muhammad Faheem Mushtaq mail , Urooj Akram mail , Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Hanen Karamti mail , Imran Ashraf mail ,
Ali
<a href="/17839/1/s41598-025-05028-7.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Enhanced schizophrenia detection using multichannel EEG and CAOA-RST-based feature selection
Schizophrenia is a mental disorder characterized by hallucinations, delusions, disorganized thinking and behavior, and inappropriate affect. Early and accurate diagnosis of schizophrenia remains a challenge due to the disorder’s complex nature and the limitations of state-of-the-art techniques. It is evident from the literature that electroencephalogram (EEG) signals provide valuable insights into brain activity, but their high dimensionality and complexity pose remain key challenges. Thus, our research introduces a novel approach by integrating the multichannel EGG, Crossover-Boosted Archimedes Optimization Algorithm (CAOA), and Rough Set Theory (RST) for schizophrenia detection. It is a four-stage model. In the first stage, Raw EGG data is collected. The data is passed to the next stage, which is called data preprocessing. This is used for artifact removal, band-pass filtering, and data normalization. The preprocessed data passed to the next stage. In the feature extraction stage, feature selection is performed using CAOA. In addition, classification is performed using a Support Vector Machine (SVM) based on features extracted through Multivariate Empirical Mode Function (MEMF) and entropy measures. The data interpretation stage displays the results to the end user using the data interpretation stage. We experimented and tested our proposed model using real EEG datasets. The simulation results prove that the proposed model achieved an average accuracy of 94.9%, sensitivity of 93.9%, specificity of 96.4%, and precision of 92.7%. Thus, our proposed model demonstrates significant improvements over state-of-the-art methods. In addition, the integration of CAOA and RST effectively addresses the challenges of high-dimensional EEG data, helps optimize the feature selection process, and increases accuracy. In future work, we suggest incorporating large-size datasets that include more diverse patient groups and refining the model with advanced machine-learning models and techniques.
Mohammad Abrar mail , Abdu Salam mail , Ahmed Albugmi mail , Fahad Al-otaibi mail , Farhan Amin mail , Isabel de la Torre mail , Thania Chio Montero mail , Perla Aracely Arroyo Gala mail ,
Abrar
<a href="/17827/1/fspor-1-1614186.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Methodology and content for the design of basketball coach education programs: a systematic review
Background: The increasing complexity of basketball and the need for optimal decision-making in order to maximize competitive performance highlight the necessity of specialized training for basketball coaches. This systematic review aims to compile, synthesize, and integrate international research published in specialized journals on the training of basketball coaches and students, examining their characteristics and needs. Specifically, it analyzes the content, technical-tactical actions, and methodologies used in practice and education programs to determine which essential parameters for their technical and tactical development. Methods: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA®) guidelines and the PICOS® model until January 30, 2025, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus, and Scopus databases. The risk of bias was assessed and the PEDro scale was used to analyze methodological quality. Results: A total of 14,090 articles were obtained in the initial search. After inclusion and exclusion criteria, the final sample was 23 articles. These studies maintained a high standard of quality. This revealed data on the technical-tactical actions addressed in different categories; the profiles, characteristics, and influence of coaches on player development; and the approaches, teaching methods, and evaluation methodologies used in acquiring knowledge and competencies for the professional development of basketball coaches. Conclusions: Adequate theoretical and practical training for basketball coaches is essential for player development. Therefore, training programs for basketball coaches must integrate technical-tactical, physical, and psychological knowledge with the acquisition of skills and competencies that are refined through practice. This training should be continuous, more specialized, and comprehensive, focusing on understanding and constructing knowledge that supports the professional growth of basketballers. Additionally, training should incorporate digital tools and informal learning opportunities, with blended learning emerging as the most effective methodology for this purpose.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Julio Calleja-González mail , Jeisson Mosquera-Maturana mail , Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es,
Alemany Iturriaga