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Abstract

Interleukin-10, a highly effective cytokine recognized for its anti-inflammatory properties,

plays a critical role in the immune system. In addition to its well-documented capacity to miti-

gate inflammation, IL-10 can unexpectedly demonstrate pro-inflammatory characteristics

under specific circumstances. The presence of both aspects emphasizes the vital need to

identify the IL-10-induced peptide. To mitigate the drawbacks of manual identification, which

include its high cost, this study introduces StackIL10, an ensemble learning model based on

stacking, to identify IL-10-inducing peptides in a precise and efficient manner. Ten Amino-

acid-composition-based Feature Extraction approaches are considered. The StackIL10,

stacking ensemble, the model with five optimized Machine Learning Algorithm (specifically

LGBM, RF, SVM, Decision Tree, KNN) as the base learners and a Logistic Regression as

the meta learner was constructed, and the identification rate reached 91.7%, MCC of 0.833

with 0.9078 Specificity. Experiments were conducted to examine the impact of various

enhancement techniques on the correctness of IL-10 Prediction. These experiments

included comparisons between single models and various combinations of stacking-based

ensemble models. It was demonstrated that the model proposed in this study was more

effective than singular models and produced satisfactory results, thereby improving the

identification of peptides that induce IL-10.

1 Introduction

The immune system is made up of different types of cells and chemicals that work together to

fight off infections. T cells [1] help B cells make antibodies and can also get rid of germs inside

cells by turning on macrophages and killing cells that are infected with viruses. Autoimmune

diseases manifest when the cells of the body are inadvertently targeted and damaged by the
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immune system. New research suggests that the immune system’s out-of-control function

plays a part in the development of many diseases, such as cancer and autoimmune diseases [2].

Interleukin (IL)-1 receptor a (1Ra), and its other variants (IL-4, IL-10, IL-11, IL-13, IL-33, IL-

35, and IL-37), as well as transforming growth factor (TGF)-β, can help the immune system

work better when it is not working properly [3].

IL-10, a cytokine that has strong anti-inflammatory effects [4]. Mossman and Coffman

were the first to clone interleukin-10 which suppresses the synthesis of cytokines by Th1 cells

[5]. A number of immune cells are responsible for the production of IL-10 such as macro-

phages, B cells, monocytes, Th2 cells, dendritic cells and multiple T cell sub-sets [6]. IL-10 is a

potent regulator of inflammation, as demonstrated by its ability to suppress TNF-α and IL-6

[7] production in damaged or affected tissues, while neutralization of IL-10 exacerbates pro-

inflammatory cytokines [8]. IL-10 changes the expression and stimulation of receptors that

recognize patterns on mast cells, which are involved in diseases associated with inflammation

[9]. IL-10 is also a critical immune suppressor that modulates host-microbiota interactions,

mast cell function, and the homeostatic control of infection and inflammation. IL-10,

renowned for its potent anti-inflammatory attributes, can exhibit pro-inflammatory character-

istics in specific contexts. The dual nature of IL-10 highlights the critical necessity of identify-

ing IL-10-induced peptides [10]. Some studies also indicate that IL-10 immune-suppressing

peptides significantly impact the development of sub-unit vaccines. However, the current

experimental and computational methods pose challenges due to their prohibitive costs and

the extensive time required for accurate IL-10 prediction. In response to these challenges, this

work employs state-of-the-art feature extraction techniques and leverages stacking ensemble

learning to enhance the prediction accuracy of IL-10. This aims to overcome the limitations

associated with existing methods, contributing to the advancement of IL-10 prediction meth-

odologies. Nagpal et al. [11] conducted an initial motif analysis and discovered many

sequences that are more commonly seen in IL-10-inducing peptides as opposed to non-induc-

ing ones. They later created several machine learning models using various feature extraction

strategies, such as dipeptide composition. The Random Forest model, utilizing dipeptide com-

position, exhibited superior performance with a Matthews Correlation Coefficient (MCC) of

0.59 and an accuracy of 81.24%. The ILeukin10Pred study utilized an Extra Tree classifier

model to detect IL-10-inducing peptides, attaining an accuracy rate of 87.5% and a Matthews

Correlation Coefficient (MCC) of 0.755. Recent study suggests that combining ensemble mod-

els can improve the accuracy of peptide prediction. In order to tackle the difficulties in peptide

prediction and expand upon prior investigations, this work presents a new technique known

as StackIL10. This method incorporates the stacking algorithm to combine many machine

learning models.

In this work, The stacking ensemble technique with amino acid composition feature encod-

ing was used to make the StackIL10 model. There are also a number of Machine Learning

models that have been taught to compare. All of the models were used to guess the IL-

10-induced peptide. This work also looks at how well different methods of multiple feature

encoding, like AAC, TPC, APAAC, DPC, and others, work. In terms of 10-fold-cross-valida-

tion (ACC, MCC), StackIL10 did better than other forecast methods. The testing accuracy of

StackIL10 was better than that of IL-10Pred and ILeukin10Pred. Overall, the StackIL10 model

that was made in this work is more accurate and works better across different situations. How-

ever, the dataset used to train and test the model was limited in size and highly imbalanced. To

improve the accuracy of identifying IL-10-inducing peptides, sufficient number of positive IL-

10-inducing peptide data might be required. The following is a list of the primary contribu-

tions of this study:
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• Design, implementation and optimization of the StackIL10, ensemble stacking, model to

predict IL-10-inducing peptide with 91.7% accuracy and 90.78% MCC.

• In the context of IL-10-induced peptide classification, this work employed nine amino acid

composition-based feature extraction methods, contributing significantly to the improve-

ment of IL-10-inducing peptide prediction.

The paper is organized into five sections in a methodical manner. Second 2 explores the lit-

erature review and provides a summary of the body of current knowledge. The Section 3 pro-

vides an in-depth exploration of the development process of StackIL10 model. The

experimental results are highlighted in the next Section 4, which also offers a thorough analysis

of the data and a performance comparison with other pertinent studies. Finally, Section 5 sum-

marizes the main ideas and contributions.

2 Literature review

MHC peptide prediction is an important part of reasonable vaccine design because it helps to

find immunogenic peptides that can make the immune system work in a safe way [12]. Differ-

ent pattern recognition methods, such as motif search [13], quantitative matrix (QM), and

machine learning methods, have been utilized in the past to create Interleukin-10 forecast

methods. QM is a very useful method because it gives a thorough picture of how each amino

acid at each position affects the binding of peptides. Most of the current T cell epitope predic-

tion methods, on the other hand, are indirect and guess MHC class I binds [14]. These

approaches are not very good at finding possible vaccine candidates and are not good for that

purpose. Most of the direct and indirect ways to identify peptides such as Interleukin-10 are

very hard to do and take a lot of time [15]. On the other hand, computer-based predictions

can successfully cut down on the work that needs to be done in real lab experiments to find

immunogenic regions [16]. Nagpal et al. [11] first did motif analysis and found a few sequences

that are more common in IL-10-inducing peptides compared to non-inducing peptides. They

then developed various ML models using different features extraction techniques, including

dipeptide composition. The Random Forest model based on dipeptide composition worked

best, with an MCC of 0.59 and 81.24% accuracy. A different study called ILeukin10Pred used

an Extra Tree classifier model to find an IL-10-inducing peptide. It had an accuracy of 87.5%

and a 0.755 MCC. Recent studies, including one by Singh et al. [17], have shown that stacking

ensemble models can improve the performance of peptide prediction [18]. To solve the prob-

lems that come up with predicting peptides and also considering previous studies, this study

created a brand-new method called StackIL10. It uses the stacking algorithm to join several

machine learning models.

3 Materials and methods

The methodology of this study involves a multi-step approach (Fig 1). First, feature extraction

is initiated from a peptide sequence dataset. The dataset encompasses 394 IL-10-inducing pep-

tides and 848 non-inducing peptides, presenting a substantial class imbalance. To address this,

both ADASYN (Adaptive Synthetic Sampling) and SMOTE (Synthetic Minority Over-sam-

pling Technique) techniques are applied for effective data balancing. Subsequently, a robust

10-fold cross-validation methodology is employed to fine-tune model hyper parameters,

ensuring the generalisation capability of the predictive model. Feature selection is conducted

using SHAP, an advanced technique that optimises the model by identifying and retaining the

most influential features. In the final phase, the developed model demonstrates efficient pre-

diction of IL-10.
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3.1 Data description

To construct the prediction model for Interleukin-10 (IL-10), we utilized a benchmark dataset

obtained from IEDB database by Nagpal et al [11]. The dataset contains information on anti-

body and T-cell epitopes obtained from experiments. In order to construct a positive dataset,

IL-10-inducing peptides were created by excluding all MHC II binders that have been experi-

mentally verified to cause the release of IL-10. Peptides that do not induce IL-10 were adminis-

tered to the MHC II binders that do not have the responsibility of inducing IL-10.

The resulting dataset contained 848 non-inducing peptide sequences and 394 IL-10-induc-

ing peptide sequences. Table 1 presents two example peptide sequences from the dataset.

3.2 Feature extraction

Feature extraction is a crucial first step in machine learning-based prediction techniques since

it guarantees the effectiveness of these methods. The study used ten feature representation

schemes, namely amino acid composition (AAC), dipeptide composition (DPC), composition,

transition, and distribution complement (CTDC), amphiphilic pseudo-amino acid composi-

tion (APAAC), k-spaced amino acid pair composition (CKSAP), tripeptide composition

(TPC), CTraid, Moran, and pseudo-amino acid composition (PAAC), PsecRAAC. The num-

ber of features for each descriptor used in the research is specified in Table 2. The ILearnPlus

[19] is used to accelerate the whole computational procedure of sequence-based forecasting for

DNA, RNA, and protein sequences. ILearnPlus has four functional modules built into a user-

friendly interface. AAC and DPC, descriptors based on amino-acid composition, exhibited the

best performance among those evaluated.

Fig 1. Overview of the experimental methodology for designing a IL-10-inducing peptide prediction model.

https://doi.org/10.1371/journal.pone.0313835.g001

Table 1. Overview of the dataset which represents single instance from each class.

Category Sequence Label

IL-10- inducing peptide RPFERDISNVPFS Positive

Non-IL-10-inducing peptide SHLVEALYLVAGERG Negative

https://doi.org/10.1371/journal.pone.0313835.t001
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AAC (Amino Acid Composition) descriptors quantify the frequency of occurrence of each

standard amino acid within a protein sequence. For a given amino acid (ith), its frequency

Amino is defined by the equation:

amino acid ðiÞ ¼
Amino Acidi

Length
; ð1Þ

In Eq 1 (Amino Acidi) represents the frequcy count of amino acid ith. By using this descriptor

group, we were able to extract features based not only on AAC, but also on CKSAAP and DPC

subsequently.

3.3 Data balancing method

The data-set contained 848 non-inducing peptide sequences and 394 IL-10-inducing peptide

sequences. The dataset is highly imbalanced; an imbalanced class is a kind of classification

problem in which some classes are much less common than others. After generating all the

characteristics, this study proceeded to normalize the data and utilized the Adasyn synthetic

sampling technique in order to avoid any bias towards the majority class, specifically peptides

that do not induce IL-10. The ADASYN technique improves learning in terms of data distribu-

tions in two ways: by minimizing the bias brought on by class imbalance and by adaptively

moving the classification decision boundary toward the difficult examples. The number of syn-

thetic data points produced for each minority class data point is determined by a weight factor.

The weight factor is based on the separation between the minority class data point and its near-

est neighbors (Eq 2).

si ¼ xi þ λðxk � xiÞ; ð2Þ

The difference vector between the minority class data point x1 and one of its k nearest neigh-

bours xk is a vector in n-dimensional space. The weight factor λ is a random number between

0 and 1.

3.4 Model designing

Diverse machine learning approaches were used to create a prediction strategy for categorising

IL-10 inducing peptides. Multiple classification strategies were employed in this investigation,

including Logistic Regression, Random Forest Classifier, Support Vector Classifier, Extreme

Gradient, Boosting Classifier, Decision Tree Classifier, K-Nearest Neighbors, and Light Gradi-

ent Boosting Machine Classifier. A stacking classifier algorithm was also created (StackIL10)

Table 2. Compilation of a list of descriptors, including a concise description and the number of features, utilizing

iLearnPlus.

Description of Descriptor Number of features or length of vector

Amino Acid Composition (AAC) 20

Amphiphilic Pseudo Amino Acid Composition (APAAC) 24

Composition of K-Spaced Amino Acid Pairs (CKSAAP) 1600

Conjoint Triad Descriptor of Codons (CTDC) 39

Composition, Transition and Distribution Descriptor (CTraid) 343

Dipeptide Composition (DPC) 400

Moran 2

Amphiphilic Pseudo Amino Acid Composition (PAAC) 22

Pseudo Amino Acid Composition (PsecRAAC) 4

https://doi.org/10.1371/journal.pone.0313835.t002
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using RandomForest, XGBClassifier, DecisionTreeClassifier, support vector machine,

KNeighborsClassifier, LogisticRegression, and LGBMClassifier. This algorithm performed bet-

ter than other classification algorithms overall. This dataset performed satisfactorily overall.

The effectiveness of the StackIL10 on additional datasets remains unclear, though. To cover all

bases, it has been assessed using benchmark data from an earlier published article on IL-

10Pred. The reason behind employing a stacking ensemble model in this research arises from

the necessity to enhance prediction accuracy and resilience, considering the constraints of

individual models. The ensemble approach effectively combines the advantageous characteris-

tics of several classifiers, mitigating the potential problem of overfitting and augmenting the

ability to generalize. Grid search and random search approaches were employed to undertake

hyperparameter tuning for each base classifier. This process resulted in optimal parameter val-

ues that achieved a balance between performance and computing economy. The StackIL10

model, which combines enhanced feature extraction and a stacking ensemble model, greatly

improves the accuracy of predicting IL-10 producing peptides. This demonstrates the effec-

tiveness of the model in bioinformatics applications. In this investigation, Scikit-learn was

used. Scikit-learn provides a standardized interface that focuses on tasks and allows access to a

diverse set of machine learning algorithms, including supervised and unsupervised ones. Thus,

the use of Scikit-learn technique facilitates the comparison of different approaches for a spe-

cific application.

3.4.1 Stacking classifier. Stacking is a type of ensemble learning method used in machine

learning. It uses several base models to improve the accuracy of the prediction as a whole.

Another name for this is stack generalization. The methodology involves training multiple

base models using the identical training dataset. Subsequently, the predictions generated by

these base models are inputted into a meta-learner. This meta-learner processes the aggregated

predictions to formulate the final prediction output. A stacking classifier lets us mix the best

parts of different algorithms to make more accurate predictions. In StackIL10, the estimators

are a combination of RF, Logistic Regression, SVM, XGBoost, LGBM, Decision Tree, and

K-NN. In a stacking classifier, different models are trained on the same data, and their predic-

tions are added together to make the end prediction, instead of just using one base model. The

selection of a stacking ensemble model for IL-10 peptide prediction was motivated by the aim

to leverage the complementary strengths of diverse base classifiers. Stacking allows us to inte-

grate the distinctive capabilities of individual classifiers, enhancing predictive performance

and robustness, particularly in the context of imbalanced datasets like those encountered in

IL-10 peptide prediction.

3.4.2 Ensemble configuration. The stacking ensemble in the StackIL10 model is struc-

tured hierarchically. Individual base classifiers, including logistic regression, decision tree, and

support vector machine, XGB, LGBM, KNN, make predictions on IL-10 peptide data. These

predictions are then used as input features for a meta-classifier, Logistic Regression, enhancing

the overall predictive performance of the ensemble.

A dataset was used to construct an instruction set and a validation set. The stacking classi-

fier from the ensemble module of scikit-learn was trained using the training set. In addition,

the effectiveness of the model was assessed using K-fold cross-validation. Fig 2 illustrates the

final StackIL10 model, which incorporates Logistic Regression as the meta-learner along with

Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neigh-

bors (KNN), and LightGBM (LGBM) classifiers that were trained as base learners. The holdout

data set was used for model validation.

3.4.3 Selection of base classifier. The selection of base classifiers for the StackIL10 model

was based on their diversity and complementary strengths. Multiple classifiers, including logis-

tic regression, decision tree, and support vector machine, XGB, KNN, LGBM were chosen to
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capture different aspects of IL-10 peptide prediction, contributing to the overall effectiveness

of the stacking ensemble. The criteria for selecting specific classifiers for the StackIL10 model

included diversity in modeling approaches, individual classifier performance, and their ability

to contribute varied insights to the ensemble.

3.4.4 Hyperparameter tuning of base classifier. Hyperparameter tuning for both base

classifiers and meta-classifier in the stacking ensemble involves grid search and randomized

search techniques. For each base classifier, an individualized search space is defined, optimiz-

ing hyperparameters to enhance predictive performance. The 10-fold cross-validation is uti-

lized to assess model generalization and prevent overfitting during hyperparameter tuning,

ensuring robust performance across diverse subsets of the dataset. The RF classifier was config-

ured with max_depth: 30, min_samples_split: 5, and _estimators: 300. And the

DT classifier was configured with criterion: entropy, min_samples_split: 5,

splitter: random. In addition the Support Vector Machine (SVM) and LGBM utilized

default parameters.

This meticulous hyperparameter tuning process ensures that each base classifier in the

StackIL10 ensemble is configured with optimal settings, contributing to the overall efficacy of

the predictive model. The fine-tuned base classifiers collectively form a robust foundation for

the subsequent stacking process, enhancing the model’s ability to discern IL-10-inducing pep-

tides accurately. The implementation of the complete code of the proposed techniques is avail-

able at https://github.com/izaz-swe/StackIL10/tree/main.

4 Results

The evaluation of the proposed StackIL10 involves a comprehensive analysis from different

perspectives. Operating as an ensemble learning-based stacking classifier, the StackIL10 model

is assessed using machine learning evaluation metrics. Due to the inherent imbalance in the

dataset, both the Adasyn and SMOTE oversampling methods are used. Thus, the performance

is described for both situations where the data are balanced and situations where it is imbal-

anced. Finally, the concluding section highlights the results obtained from the combined fea-

ture analysis.

4.1 Performance evaluation

Performance evaluation is essential for machine learning models to evaluate their efficacy,

uncover areas for improvement, and guarantee their stability for real-world implementations.

Therefore, for each machine learning model, choosing the appropriate evaluation matrices is

crucial. For machine learning models that make use of classification, the AUC is a standard

Fig 2. StackIL10 configuration for IL-10-inducing peptide prediction.

https://doi.org/10.1371/journal.pone.0313835.g002
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measure of performance. A higher AUC indicates a more accurate prediction model. Here is

an overview of each measure.

Sensitivity: The ratio of the number of positive class instances that the model correctly clas-

sifies as positive is measured by sensitivity, which is often referred to as the true positive rate

(TPR). In applications such as medical diagnosis, where it is vital to prevent missing real posi-

tive cases, high sensitivity is essential. The sensitivity is defined by the Eq 3.

Sensitivity ¼
TP

TPþ FN
� 100% ð3Þ

Specificity: Specificity, often known as the true negative rate, is a metric used to assess how

well the model detects cases of the negative class. This effort aims to determine the specificity

(Eq 4) with which the StackIL10 model can identify peptides that do not induce IL-10.

Specificity ¼
TN

TNþ FP
� 100% ð4Þ

Accuracy: One commonly used metric, accuracy, indicates how well the model can predict

both positive and negative occurrences. In the context of this work, accuracy is pivotal for

understanding the StackIL10 model proficiency in capturing the true nature of IL-10-inducing

and non-inducing peptides. For datasets without oversampling using techniques like ADA-

SYN or SMOTE, and where classes are imbalanced, accuracy (Eq 5) serves as a holistic mea-

sure.

Accuracy ¼
TPþ TN

TPþ FPþ TNþ FN
� 100% ð5Þ

MCC: Taking into consideration false positives, false negatives, true positives, and true neg-

atives, the Matthews Correlation Coefficient (MCC) offers a thorough evaluation of the

StackIL10 performance that goes beyond basic accuracy. Eq 6 is useful, when there is an imbal-

ance in the distribution of peptides that induce IL-10 and those that do not, it is quite useful.

MCC ¼
ðTP � TNÞ � ðFP � FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p � 100 ð6Þ

where, TP stands for true positive, TN for true negative, FP stands for false positive, and FN

for false negative.

4.1.1 Performance evaluation of ML models for imbalanced data. The train-test split

approach was originally used to the imbalanced dataset during the training phase. Within this

process, 80% of the dataset was assigned for model training, while the remaining 20% was put

aside for model testing. Tables 3 and 4 provide a thorough record of the outcomes derived

from the train-test division conducted on the imbalanced dataset.

As indicated in Table 3, LR and KNN classifiers exhibited the least favourable performance.

In particular, among the eight machine learning algorithms considered, the stacking ensemble

demonstrated the highest accuracy, reaching 78.99% with 0.4865 MCC and Specificity of

0.5178.

In Table 4, during hyperparameter tuning using 10-fold cross-validation, the Random For-

est and LGBM models achieved 80% accuracy on the CKSAAP feature, closely resembling the

Stacking classifier. However, the Stacking Classifier outperformed, attaining the highest per-

formance metrics: 80.60% accuracy, an AUC of 0.74, and a sensitivity of 91%.

4.1.2 Performance evaluation of ML models for balanced data. The initial accuracy of

the imbalanced dataset was notably low. Consequently, Adasyn and SMOTE oversampling

PLOS ONE StackIL10: A stacking ensemble model for the improved prediction of IL-10 inducing peptides

PLOS ONE | https://doi.org/10.1371/journal.pone.0313835 November 14, 2024 8 / 14

https://doi.org/10.1371/journal.pone.0313835


techniques were employed to rectify the imbalance, leading to a substantial enhancement in

the performance of the machine learning model. The accuracy witnessed a considerable

increase, with improvements approaching nearly 10% in certain cases. As indicated in Table 5,

LR and KNN, SVC classifiers exhibited the least favourable performance. Notably, among the

eight machine learning algorithms considered, the stacking ensemble demonstrated the high-

est accuracy, reaching 88% with 0.76 MCC and Specificity of 0.85.

In Table 6, StackingClassifier also achieved the best performance on the APAAC feature,

with 87.53% accuracy, 0.8753 AUC, and 0.75 MCC. Random Forest classifiers also performed

well, achieving 86% accuracy.

4.1.3 Performance evaluation of ML models for combined feature. Independent testing

is a crucial step in machine learning to assess a model’s ability to generalise to unseen data and

avoid overfitting. An ROC curve is a visual representation that showcases the effectiveness of a

Table 4. Evaluation of CKSAAP feature based ML models using 10-fold CV.

Classifier Accuracy MCC AUC Sensitivity Specificity

LR 0.7327 0.3096 0.6004 0.9623 0.2386

RF 0.7979 0.5073 0.7263 0.9222 0.5305

SVC 0.7729 0.4358 0.6775 0.9387 0.4162

XGB 0.8052 0.5335 0.7527 0.8962 0.6091

DT 0.7681 0.4530 0.7208 0.8502 0.5914

KNN 0.6908 0.4912 0.7593 0.5719 0.9467

LGBM 0.8027 0.5282 0.7509 0.8927 0.6091

Stacking 0.8060 0.5310 0.7444 0.9127 0.5761

https://doi.org/10.1371/journal.pone.0313835.t004

Table 3. Evaluation of AAC feature based ML models using 10-fold CV.

Classifier Accuracy MCC AUC Sensitivity Specificity

LR 0.6868 0.1304 0.5376 0.9458 0.1294

RF 0.7979 0.5099 0.7331 0.9104 0.5558

SVC 0.7303 0.3041 0.6109 0.9375 0.2843

XGB 0.7979 0.5183 0.7481 0.8844 0.6117

DT 0.7375 0.3884 0.6923 0.8160 0.5685

KNN 0.7367 0.3580 0.6652 0.8608 0.4695

LGBM 0.8052 0.5351 0.7554 0.8915 0.6193

Stacking 0.7899 0.4865 0.7170 0.9163 0.5178

https://doi.org/10.1371/journal.pone.0313835.t003

Table 5. Evaluation of AAC feature based ML models using 10-fold CV.

Classifier Accuracy MCC AUC Sensitivity Specificity

LR 0.6319 0.2625 0.6310 0.6639 0.5980

RF 0.8702 0.7416 0.8691 0.9080 0.8302

SVC 0.7580 0.5194 0.7592 0.7182 0.8002

XGB 0.8617 0.7234 0.8612 0.8809 0.8414

DT 0.7829 0.5654 0.7827 0.7889 0.7765

KNN 0.7586 0.5507 0.7631 0.6073 0.9189

LGBM 0.8605 0.7211 0.8598 0.8844 0.8352

Stacking 0.8805 0.7616 0.8797 0.9092 0.8502

https://doi.org/10.1371/journal.pone.0313835.t005
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binary classification model. Fig 3 represents the independent testing performance by ROC

curves of seven machine learning models using combined features: AAC, DPC. In this graph,

the True Positive Rate (TPR) is plotted along the Y-axis, while the False Positive Rate (FPR) is

plotted along the X-axis.

Table 7 represents, AAC + DPC feature, Logistic Regression performed the worst, with an

accuracy of 63.42% and an MCC of only 0.26. However, StackingClassifier performed the best,

with an accuracy of 91.74%, an MCC of 0.8330, and an AUC of 0.9165.

Fig 3 represents the ROC curve which helps to compare classifiers. Among the evaluated

ML algorithms for AAC+DPC feature, StackingClassifier achieved the highest AUC value of

0.96, indicating superior performance in distinguishing positive and negative cases. RF also

demonstrated a strong performance with an AUC of 0.95, while Logistic Regression exhibited

a lower AUC of 0.81, suggesting a less effective ability to differentiate between positive and

negative instances. The ROC curve analysis revealed that StackingClassifier outperformed all

other ML algorithms for the AAC+DPC feature.

Table 6. Evaluation of APAAC feature based ML models using 10-fold CV.

Classifier Accuracy MCC AUC Sensitivity Specificity

LR 0.6388 0.2780 0.6389 0.6592 0.6185

RF 0.8612 0.7234 0.8612 0.8880 0.8345

SVC 0.7653 0.5328 0.7652 0.7182 0.8122

XGB 0.8347 0.6707 0.8348 0.8644 0.8052

DT 0.7218 0.4435 0.7217 0.7146 0.7289

KNN 0.8100 0.6431 0.8097 0.6757 0.9437

LGBM 0.8353 0.6726 0.8354 0.8726 0.7981

Stacking 0.8753 0.7510 0.8753 0.8915 0.8592

https://doi.org/10.1371/journal.pone.0313835.t006

Fig 3. Performance comparison of different models using ROC curve.

https://doi.org/10.1371/journal.pone.0313835.g003
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4.2 Discussion

While substantial research has been dedicated to Interleukin-10 prediction, there exists an

ongoing quest for advancements in this domain. This work focuses on predicting IL-10 using

an amino-acid-composition based dataset. Following dataset collection, a meticulous pre-pro-

cessing stage was executed to render the data amenable to in-depth analysis. Eight supervised

machine learning algorithms, specifically Decision Trees (DT), Random Forest (RF), Support

Vector Machine (SVM), XGBoost, LightGBM (LGBM), and Stacking classifier (StackIL10),

were employed for IL-10-inducing peptide prediction. The results of these machine learning

approaches were rigorously evaluated using various performance metrics, with a particular

emphasis on accuracy.

4.2.1 Comparative analysis of existing work. Table 8 presents a comparative analysis of

existing relevant models alongside the proposed model. The StackIL10 classifier demonstrates

superior predictive performance compared to IL-10Pred and ILeukin10Pred. With the highest

accuracy (0.917), StackIL10 excels in IL-10 peptide prediction, supported by its leading Mat-

thews Correlation Coefficient (MCC) of 0.833, emphasizing a strong balance between true

positives and true negatives. In particular, stackIL10 achieves the highest sensitivity (Sn) at

0.9078, demonstrating its effectiveness in identifying IL-10-inducing peptides. Although ILeu-

kin10Pred exhibits commendable accuracy (0.875) and MCC (0.755), StackIL10 exceeds it in

both metrics. IL-10Pred, while competitive, slightly lags in accuracy and MCC. In summary,

the StackIL10 stacking classifier excels in accuracy, MCC, and sensitivity, highlighting the effi-

cacy of ensemble methods, particularly stacking, in enhancing predictive outcomes in bioin-

formatics application.

4.2.2 Performance comparison among imblanced, balanced and combined feature.

Fig 4, bar chart, visually compares the Stacking model’s performance across various metrics

(accuracy, MCC, AUC, sensitivity, and specificity) on imbalanced, balanced, and combined

datasets. The Proposed Model achieved the highest accuracy (91.70%) and MCC (0.83) in

independent testing on the Combined Feature dataset. This highlights the significant improve-

ment gained through dataset balancing and the Stacking model’s overall effectiveness in han-

dling diverse data scenarios.

Table 7. Evaluation of AAC + DPC feature based ML models for independent testing.

Classifier Accuracy MCC AUC Sensitivity Specificity

LR 0.634218 0.263443 0.632124 0.611842 0.652406

RF 0.876106 0.757867 0.880928 0.927632 0.834225

SVC 0.861357 0.719213 0.857093 0.815789 0.898396

XGB 0.873156 0.746891 0.875176 0.894737 0.855615

DT 0.80826 0.622108 0.812658 0.855263 0.770053

KNN 0.761062 0.55194 0.736631 0.5 0.973262

LGBM 0.876106 0.753282 0.878465 0.901316 0.855615

Stacking 0.917404 0.833028 0.916514 0.907895 0.925134

https://doi.org/10.1371/journal.pone.0313835.t007

Table 8. Comparison of the proposed model with existing relevant methods.

Author Classifier ACC MCC Sensitivity Specificity

Nagpal et al. IL-10Pred 0.812 0.590 0.797 0.819

Singh et al. ILeukin10Pred 0.875 0.755 0.804 0.947

Proposed Model StackIL10 0.917 0.833 0.9078 0.925

https://doi.org/10.1371/journal.pone.0313835.t008
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5 Conclusion

Interleukin-10 (IL-10) is a cytokine with a dual role in tissue homeostasis and autoimmune

diseases. IL-10 has potent anti-inflammatory properties and is essential for maintaining nor-

mal tissue homeostasis. However, defective IL-10 signaling can lead to the development of

autoimmune diseases, in which the immune system mistakenly attacks the body’s own tissues.

Some studies also show that guessing the immune suppressing peptide has a great effect on the

Fig 4. Performance comparison among imbalanced, balanced and combined feature.

https://doi.org/10.1371/journal.pone.0313835.g004
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production of subunit vaccines. This study introduces a new IL-10-inducing peptide predic-

tion method, StackIL10. The model is trained on a benchmark dataset using the ILearnplus

package for feature extraction and ADASYN for data balancing. A variety of machine learning

models, such as RF, SVM, and LGBM, undergo training and evaluation using a 10-fold cross-

validation and independent tests. The best performing models are then combined using a

stacking algorithm to create the final model, StackIL10. StackIL10 is shown to achieve the best

performance in the independent test set. Cutting edge tools and methods are used to create

StackIL10, a new peptide prediction model for IL-10. StackIL10 was more accurate than other

methods already used. However, the sample that was used to teach and test the model was not

very large. To better understand and identify IL-10-inducing peptides, we need more data that

have been confirmed by experiments.
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8. Geladaris A, Häusser-Kinzel S, Pretzsch R, Nissimov N, Lehmann-Horn K, Häusler D, et al. IL-10-pro-
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