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Abstract: The perception and recognition of objects around us empower environmental interaction.
Harnessing the brain’s signals to achieve this objective has consistently posed difficulties. Researchers
are exploring whether the poor accuracy in this field is a result of the design of the temporal
stimulation (block versus rapid event) or the inherent complexity of electroencephalogram (EEG)
signals. Decoding perceptive signal responses in subjects has become increasingly complex due
to high noise levels and the complex nature of brain activities. EEG signals have high temporal
resolution and are non-stationary signals, i.e., their mean and variance vary overtime. This study
aims to develop a deep learning model for the decoding of subjects’ responses to rapid-event visual
stimuli and highlights the major factors that contribute to low accuracy in the EEG visual classification
task.The proposed multi-class, multi-channel model integrates feature fusion to handle complex,
non-stationary signals. This model is applied to the largest publicly available EEG dataset for visual
classification consisting of 40 object classes, with 1000 images in each class. Contemporary state-of-
the-art studies in this area investigating a large number of object classes have achieved a maximum
accuracy of 17.6%. In contrast, our approach, which integrates Multi-Class, Multi-Channel Feature
Fusion (MCCFF), achieves a classification accuracy of 33.17% for 40 classes. These results demonstrate
the potential of EEG signals in advancing EEG visual classification and offering potential for future
applications in visual machine models.

Keywords: BCI; EEG; visual classification; rapid-event design; block design

1. Introduction

Electroencephalogram (EEG) imaging is a method used to assess the electrical activity
of neurons in the brain. As the brain controls all bodily organs, brain signals change based
on an individual’s mental state, cognitive processes, visual inputs, and other influencing
elements [1,2]. It is well established that brain activity recordings contain specific informa-
tion about visual object categories [3,4]. However, recognizing object classes in textual or
video data is simpler than in brain signals, which is still a challenge for researchers [5,6].
Studies on EEG signal processing have identified the occipital lobe as the region of the
brain responsible for visual perception, including the recognition of objects, as well as their

Sensors 2024, 24, 6965. https://doi.org/10.3390/s24216965 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24216965
https://doi.org/10.3390/s24216965
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9433-7258
https://orcid.org/0000-0003-0101-4781
https://orcid.org/0009-0009-9872-3082
https://orcid.org/0000-0003-0671-2060
https://orcid.org/0000-0003-3747-1263
https://doi.org/10.3390/s24216965
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24216965?type=check_update&version=2


Sensors 2024, 24, 6965 2 of 17

shapes, colors, distances, and materials [7]. The occipital lobe can perform visuospatial
processing and associated memory formation within a maximum of 200 ms [7,8]. Due to
this biological connection, during EEG signal acquisition, visual stimuli are shown for 2 s,
with 1 s breaks between consecutive stimuli. Research has shown that the rapid processing
capabilities of the occipital lobe are crucial for accurate and timely visual perception [8].
This understanding has been pivotal in the development of EEG-based systems for object
recognition [9].

Brain signals hold manifold information, reflecting a range of motor imagery tasks,
emotional processes, sensory/auditory tasks, and cognitive behaviors [10,11]. This informa-
tion can be utilized for a variety of endeavors, like for the recognition of emotions [12–14],
sleep stages [15–17], prediction of critical thinking [18], speech activity detection in mute
patients [19,20], etc. Various techniques are utilized for brain signals collection like fMRI
(functional magnetic resonance imaging) [21,22], PET (positron emission tomography) [23],
ECoG (electrocorticography) [24], MEG (magnetoencephalography) [25], and EEG [26].
FMRI and PET data provide great spatial resolution, but due to their lack of a temporal
nature, cannot be used for visual object recognition [21,23]. The ECoG technique yields
data with excellent temporal and spatial resolution but is highly invasive, as it requires
the electrodes to be placed directly on the brain and not on the scalp [24]. MEG is used to
measures the magnetic fields around the brain and is conducted inside a shielded room
environment to avoid external electromagnetic noise. It provides high temporal and spatial
resolutions and is a noninvasive technique [25]. However, due to the high cost and immo-
bility of MEG, these devices are hard to use [27]. EEG also offers data with high temporal
resolution that are well suited for object classification tasks [25].

EEG signals are classified into various frequency bands, like alpha (8–12 Hz), beta
(13–25 Hz), theta (4–7 Hz), and gamma (30–80 Hz). Alpha and theta frequencies correspond
to a person’s relaxed state with their eyes closed. Beta and gamma bands are known for
recognizing critical thinking, problem solving, and visual recognition in the brain [28] and
are mostly used in EEG visual recognition tasks [29–32].

The Temporal Stimulation Design (TSD) for signal acquisition greatly affects the EEG
signal. Studies have shown that TSD is performed using a block design or a rapid-event
design [33,34]. In the former, a person is continuously shown a block of images from
the same class without any rest between images for the signal waveform to return to its
baseline, distorting the next waveform [35,36]. In the latter design, the person is shown
random images from different classes with an interval between each image. This interval is
provided so that the excited neurons can reach the baseline so as not to interfere with the
waveform of the next signal [37,38].

The block design in temporal stimulation is helpful in the detection of brain activity,
such as epilepsy, neural activity in a brain part, tumors, and motor imagery signals [39–41].
The rapid-event design is well suited for classification tasks to distinguish one brain signal
from another [33].

A possible reason behind the low accuracy in the visual classification task is that
the EEG signals are non-stationary [35,42,43]. Their statistical features, such as mean and
variance, change over time. A study by Miladinović et al. [44] indicated that the non-
stationarity of EEG signals can cause shifts in feature covariance with time. To effectively
capture and understand these signal-shifting dynamics, sophisticated analytical techniques
are needed.

The rest of this paper is structured as follows: Section 2 provides an overview of
related work, highlighting the datasets used in this task to date, as well as their usages and
design techniques. In Section 3, we provide a detailed description of the dataset, as well as
the data processing and feature extraction processes and the proposed classifiers. Section 4
presents the experimental results in detail. In Section 5, a detailed discussion about the
experiments, the achieved results, and comparisons with state-of-the-art approaches is
presented. Finally, Section 6 concludes the paper, summarizing key findings and discussing
future research.
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2. Related Work

In 2017, Spampinato et al. [34] published an article on the classification of visual objects
through EEG signals using their self-made dataset. The authors reported an accuracy of
93.91%. Subsequently, the code and data were made publicly available, leading to numerous
publications [33,34,45–51]. All of these studies incorporated the same data and achieved
improvements in accuracy up to 97.13%.

In 2020, Hammad et al. [52] and Renli et al. [33] used the same dataset and code
initially released in [34], and claimed that the achievement of high classification accuracy
on this task is not due to the model architecture or the EEG signal but the following:

1. Usage of a block design during signal acquisition.
2. No preprocessing employed, i.e., usage of unfiltered data, resulting in training on

noisy data.
3. Test data are sourced from the same block as the training data.

Hammad et al. [45,52], Renli et al. [33], and Hari [32] substantiated their points by the
following means:

1. EEG data collected on a set of object classes/images identical to that utilized by
Spampinato et al. [34];

2. Application of the same block design technique;
3. Adoption of similar preprocessing methods;
4. Utilization of test data sourced from the same block as the training data.

Following these steps, they achieved the highest classification accuracy in KNN,
i.e., 100%. Other models like SVM, MLP, 1D CNN,and LSTM also performed very well,
proving that a block design results in an accuracy boost in the object classification task.
The authors concluded that in a block design, the rise in electrical potential in the brain is
not given enough time to return to its baseline, contaminating the waveform of the next
signal [33,45,52].

Hammad et al. [45,52] and Renli et al. [33] gathered data using a rapid-event temporal
stimulation design with the same object classes as used before and performed prepos-
sessing; the achieved results achieved astonishing, i.e., the accuracy degraded to 5.6%.
Renli et al. [33] claimed that the data collected, used, and released in [34] suffer from ir-
reparable contamination, i.e., all the image signals are contaminated by the next signal.

With the use of EEG signals in an event-related design rather than a block design, the
accuracy of the signal is severely compromised. Researchers [29,31,53–56] have collected
data for the EEG classification task using the rapid-event approach, varying the number
of classes and incorporating different object classes. All of these studies [5,32,47,50,57–59]
suggest that higher accuracy in EEG object classification is possible for only a low number
of classes using rapid-event temporal stimulation. The authors of [45] published comments
on [46] in Transactions on Pattern Analysis and Machine Learning, substantiating the point
that using test data from the same block as the train data resulted in high accuracy in block
design. Using the same data and code, only applying cross validation by leaving one block
out in each turn, resulted in very low accuracy.

Various studies have been conducted to collect data using rapid-event and block
designs on different object classes. A summary of EEG dataset collection efforts for EEG
visual classification tasks are provided in Table 1. Datasets collected over time have used a
variety in stimuli, temporal stimulation designs, numbers of classes, numbers of images per
class, numbers of subjects, devices, numbers of channels, and sampling rates. Classification
accuracies achieved on varying datasets is presented in Table 2.
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Table 1. Summary of datasets used for EEG visual classification.

Ref# Name of Dataset Journal
and Year Stimulus TSD No.

of Classes
No. of Images/
Clips per Class No. of Subjects Device/No.

of Channels Sampling Rate

[52] ImageNet D1 Journal 2021 Image Rapid Event 40 1000 01 BioSemi ActiveTwo
recorder 104 4096 Hz

[34] ImageNet D2 Journal 2017 Image Block Design 40 50 06 ActiCap 128 1000 Hz

[33] ImageNet D3 Journal 2021 Image Rapid Event 40 50 6 BioSemi ActiveTwo
recorder 104 4096 Hz

[33] ImageNet V1 Journal 2021 Video Rapid Event 12 32 06 BioSemi ActiveTwo
recorder 104 4096 Hz

[53] Stanford Dataset D4 Journal 2015 Image Rapid Event 6 12 10 EGI HCGSN 128 1000 Hz

[29] MPI DB D5 Journal 2010 Image Rapid Event 3 4 04 ActiCap System 64 500 Hz

[54] Things D6 Journal 2022 Image Rapid Event 1854 10 10 Easy Cap 64 1000 Hz

[31] ImageNet D7 Journal 2023 Image Rapid Event 4 10 04 ActiCHamp 32 1000 Hz

[55] MNIST D8 Journal 2024 Image Rapid Event 11 116 01 Emotiv EPOC 14 128 Hz

[56] Human dataset D9 Journal 2017 Image Rapid Event 5 12 16 Easycap 74 1000 Hz

[60] EEG-ImageNet D10 Journal 2024 Image
(coarse-grained) Block Design 40 50 16 - 1000 Hz

[60] EEG-ImageNet D11 Journal 2024 Image (fine-grained) Block Design 40 50 16 - 1000 Hz

Table 2. Summary of all the relevant literature.

Ref # Year Type Dataset Utilized Classes TSD Classifier Accuracy

[60] 2024 Journal EEG-ImageNet D11 40 Block Design SVM 77.84%
MLP 81.63%
EEGNet 36.45%
RGNN 70.57%

[60] 2024 Journal EEG-ImageNet D10 40 Block Design SVM 50.57%
MLP 53.39%
EEGNet 30.30%
RGNN 47.03%

[61] 2024 Journal ImageNet D1 40 Rapid Event EEGVis_CMR (from EEG to Image) 17.9%

[57] 2024 Journal MNIST D8 11 Rapid Event RieManiSpectraNet 55%

[58] 2024 Journal Human dataset D9 05 Rapid Event LDA 68.75%
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Table 2. Cont.

Ref # Year Type Dataset Utilized Classes TSD Classifier Accuracy

[59] 2023 Journal Stanford Dataset D4 06 Rapid Event LSTM 55.55%
SVM 66.67%

[31] 2023 Journal ImageNet D7 04 Rapid Event SVM 36.22%
CNN 64.49%
LSTM-CNN 65.26%
EEGNet 79.29%

[54] 2022 Journal Things D6 1854 Rapid Event AlexNet 15.4%
ResNet-50 16.25%
CORnet 21.05%
MoCo 12.40%

[50] 2022 Journal ImageNet D2 40 Block Design SVM 82.70%
RNN-based Model 84.00%
Siamese Network 93.70%
Bi-LSTM 92.59%
HDRS-STF 99.78%
BiLISTM+AttGW 99.50%

[5] 2023 Journal Stanford Dataset D4 06 Rapid Event LDA 40.52%
ShallowConvNet 46.51%
EENet 43.83%
LSTM 38.06%
EEG-Conv Transformer 52.33%
TSCNN 54.28%

Max Plank Institute Dataset [MPI DB] 03 Rapid Event LDA 76.11%
ShallowConvNet 77.42%
EEGNet 77.79%
LSTM 60.61%
TSCNN 84.40%

[32] 2023 Journal ImageNet D1 40 Rapid Event LSTM 2.3%
k-NN 2.1%
SVM 3.0%
MLP 2.8%
1D CNN 2.4%
EEGNet 17.6%
SyncNet 3.7%
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Table 2. Cont.

Ref # Year Type Dataset Utilized Classes TSD Classifier Accuracy

[45] 2022 Journal ImageNet D2 40 Block Design LSTM 2.7%
k-NN 3.6%
SVM 3.0%
MLP 3.7%
1D CNN 3.3%
EEGNet 2.5%
SyncNet 3.8%
EEGChannelNet 2.6%

[33] 2021 Journal ImageNet D3 40 Rapid Event LSTM 2.9%
k-NN 3.2%
SVM 3.0%
MLP 3.7%
1D CNN 3.3%

[52] 2021 Conference ImageNet D1 40 Rapid Event 1D CNN 5.1%
LSTM 2.2%
SVM 5.0%
k-NN 2.1%

[62] 2019 Journal ImageNet D2 40 Block Design LSTM 63.1%
k-NN 100%
SVM 100%
MLP 21.9%
1D CNN 85.9%

ImageNet D3 40 Rapid Event LSTM 0.7%
k-NN 1.4%
SVM 2.7%
MLP 1.5%
1D CNN 2.1%

[46] 2020 Journal ImageNet D2 40 Block Design Inception v3 (from signals to images) 94.4%

[47] 2019 Journal ImageNet D2 40 Block Design Proposed LSTM-B 97.13%

[48] 2018 Conference ImageNet D2 40 Block Design Proposed Bidirectional LSTMs 97.3%

[49] 2018 Conference ImageNet D2 40 Block Design Proposed Region-level bi-directional LSTM 97.1%

[34] 2017 Conference ImageNet D2 40 Block Design GoogleNet 92.6%
VGG 80.0%
Proposed Method 89.7%
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A systematic summary of literature review considering the used dataset, applied ML
models, and achieved accuracy is provided in Table 2. Higher accuracy trends can be seen
in the data when a block design is used and when a lower number of classes is applied in
a rapid-event design. A block design applied to 40 classes achieved a maximum of 100%
accuracy, while a rapid-event design applied to the same classes but with a differing class
image achieved maximum accuracy of 5.6%. During this extensive literature survey, we
have identified the following several factors that cause low accuracy in the EEG visual
classification task:

1. Determination of the optimal number of object classes to increase accuracy, as a low
number of classes results in higher accuracy and vice-versa;

2. Lack of exploration of the use of a rapid-event design versus a block design during
EEG signal acquisition [32,45,52,62];

3. Selection of channels, which contributes to accuracy boosts using channel selection
techniques such as the linear removal of channel drops in accuracy to chance, as
reported in [27,32].

4. Ensuring accurate labeling of data as incorrect or arbitrary labeling of events in block
and rapid-event designs, resulting in accuracy boosts, reported in an analysis by Ren
Li et al. [33] (page 318, Section 2 point e).

5. Implementation of effective preprocessing techniques to enhance data quality, as raw
data result in higher accuracy than filtered data, as reported in [32,34,45,52].

3. Materials and Methods

The proposed methodology, as presented in Figure 1, encompasses many essential
steps in the processing and classification of EEG signals. First, the dataset is separated into
EEG signals and annotations. Then, the signals are rereferenced to the mastoids to remove
noise and artifacts. The signal is then bandpass-filtered to eliminate undesired frequencies.
Subsequently, a notch-filtering technique is employed to eliminate any power-line interfer-
ence. The EEG signals are divided into epochs, from which features are derived. Feature
selection is a process that determines the most significant features for classification. This is
accomplished using techniques like filters. Ultimately, classifiers are trained, then compared
in order to evaluate their performance using metrics like accuracy and sensitivity. These
metrics are crucial for the assessment and comparison of different classification methods.

Figure 1. Diagram of the proposed methodology.

3.1. Dataset Description

The dataset used in this study comprises publicly available data originally collected
by [52]. In this research, we refer to it as ImageNet comprises a subset of images taken
from the ILSVRC (ImageNet Large-Scale Visual Recognition Challenge) dataset. This is one
of the largest EEG Signal datasets. Comprehensive details about the dataset are provided
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in Table 3. EEG signals were recorded while subjects viewed image stimuli from random
object classes.

Table 3. Image-Net EEG data collection.

Device BioSemi ActiveTwo recorder
Number of Subjects 1
Visual Stimuli ILSVRC-2021
Total Classes 40
Images per Class 1000
Duration of Visual Stimuli 2 s with 1 s blanking
Sampling Frequency 4096 Hz
Data Resolution 24 bits
Temporal Stimulation Design Rapid Event design

The dataset comprises of 40 classes with 1000 images each. The complete dataset is
built on 40,000 images. Figure 2 shows the object classes used as visual stimuli. For each
session, 10 images are randomly selected from each class, resulting in 100 sets of 400 images
each. During each 1440 s session, the subject viewed 400 randomly ordered images. A
total of 100 sessions were conducted, each approximately 1440 s in duration, employing
a rapid-event temporal design. Figure 3 represents the baseline of these sessions. Each
session begins and ends with 10 s of blank, followed by 2 s of visual stimulus and 1 s of
a blank screen. The blank screen, displayed as a black screen, allows the subject’s brain
signal to return to baseline before presenting the next image. This method ensures that the
signal from each new stimulus does not interfere with the preceding signal.

Figure 2. Classes used as visual stimulus.

Figure 3. Timeline of the visual stimuli shown to subjects.

3.2. Preprocessing and Feature Extraction

The raw EEG data from 99 brain data format (BDF) files were initially unprocessed.
To manage computational resources effectively, the MNE library in Python was employed
to read files in batches of two. Each file contained approximately 1440 s of EEG signals
from 105 sensory positions, consisting of 104 channels and 1 stimulus channel providing
event onset information. Separate event files were maintained using the same visual object
sequence shown to the subjects, which was unique for each file/setting. The data were
sampled at 4096 Hz, resulting in ((400 × 2 s + 1 s) × 4096) = 4,915,200 time points, with an
additional (10 s + 10 s) × 4096 = 81,920 time points of start and end session blanks. The
processing steps after reading the file include the following:

1. Raw EEG data are rereferenced to the mastoids to remove external noise and artifacts.
2. The data are bandpass-filtered by applying a zero-phase FIR filter from the MNE

library. This filter eliminates phase shifts and gradually cuts off frequency components
below 14 Hz and above 71 Hz, so no ringing artifacts remain in the signal.

3. A notch filter at 49–51 Hz is applied to remove any power-line noise.
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4. The data are then epoched based on events, starting from −0.5 s and ending at 2.5 s
for each event. The length of the epochs retrieved at this stage for a batch of files is
4,997,120 × 104. A total of 4,997,120 of the time points are considered rows, while 104
represent the sensory positions.

5. Events corresponding to 400 visual stimuli are extracted from the stimulus channel
and assigned unique class labels for all 40 classes.

6. The data are then annotated using the unique labels and epoch data.

After signal preprocessing, the subsequent crucial step is feature extraction. This step
is particularly significant due to the inherent complexity of EEG signals, i.e., they are non-
stationary, non-linear, and non-Gaussian [30,63]. Given the temporal nature of EEG signals,
preserving their effectiveness requires a statistical feature analysis and extraction approach.
EEG is recorded at a 4096 Hz sampling frequency. This constitutes a huge amount of data
that cannot be fed directly into any model. Therefore, in order to group the data while
preserving effectiveness, various statistical methods were evaluated to determine the most
effective, such as the mean, standard deviation, and mean of absolute values of first and
second differences [63,64] were applied. The best results were achieved by performing the
standard deviation on each of the channels per epoch.

3.3. Proposed Classifiers

This study employed seven different classifier models, each with an architecture
optimized for EEG data. The machine learning learning models include k nearest neighbor
(KNN), support vector machine (SVM) and multilayer perceptron (MLP). Deep learning
models used in this study include are 1D Convolutional Neural Networks (1D CNNs), Long
Short-Term Memory (LSTM), and the proposed MCCFF with ResNet and VGG models. We
only adopted the ResNet-50 and VGG architectures, i.e., the models were trained on the
dataset from scratch. The input shape to the deep learning models is a 3D matrix consisting
of events, channels, and features. Owing to their long-term dependencies the 1D CNN and
LSTM architectures are excellent choices for time-series data. The parameters for all these
models are presented in Table 4.

Table 4. Parameters of the classifiers used for EEG data after feature extraction.

Classifier Parameters

KNN k = 5

SVM kernel = ‘poly’, C = 20, random_state = 1,gamma = 1, probability = True, class_weight = ‘balanced’

MLP Hidden_layers = 1500, Max_iterations = 2000, random_state = 42

1D CNN Learning rate = 0.0005, batch size = 100, epochs = 200, optimizer = Adam, loss = sparse_categorical_crossentropy,
metrics = Accuracy, no of Layers = 15, activation = Relu, Softmax

LSTM Learning rate = 0.005, batch size = 100, epochs = 200, optimizer = Adam, loss = sparse_categorical_crossentropy,
metrics = Accuracy, no of Layers = 14, activation = Relu, Softmax

MCCFF Net-50 Learning rate = 0.005, Batch size = 120, epochs = 150, optimizer = Adam, loss = sparse_categorical_crossentropy,
metrics = Accuracy, no of layers = 51, activation = Relu, Sigmoid

MCCFF VGG Learning rate = 0.001, Batch size = 100, epochs = 200, optimizer = Adam, loss = sparse_categorical_crossentropy,
metrics = Accuracy, no of layers = 16, activation = Relu, Sigmoid

The best results with the KNN classifier were achieved with a k value of 5. The SVM
model used a polynomial kernel with a C value of 20 and gamma set to 1. The MLP classifier
was configured with 1500 hidden layers and a maximum of 2000 iterations. For the 1D
CNN model, tuning the learning rate and epochs and incorporating a batch normalization
layer with dropout layers significantly improved performance and lowered the chance of
overfitting, respectively. The LSTM model adopted a similar approach to the 1D CNN, with
a learning rate of 0.005 sparse categorical cross-entropy. It employed a batch size of 100 and
150 epochs, using batch normalization with an Adam optimizer. The number of epochs
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and batch normalization were crucial factors in enhancing accuracy. The architectures of
the 1D CNN and LSTM are presented in Table 5.

Table 5. 1D CNN and LSTM model architectures.

1D CNN Model LSTM Model

Layer Neural Units/Kernel Size Activation Layer Neural Units Activation

Conv1D 8 (3, 3) ReLU LSTM 8 ReLU

Dropout 0.1 - Batch Normalization - -

Batch Normalization - - MaxPooling1D - -

MaxPooling1D (4, 4) - LSTM 16 ReLU

Conv1D 16 (3, 3) ReLU Dropout 0.2 -

Dropout 0.2 - Batch Normalization - -

Batch Normalization - - MaxPooling1D - -

MaxPooling1D (4, 4) - LSTM 32 ReLU

Conv1D 32 (3, 3) ReLU Dropout 0.4 -

Batch Normalization - - Batch Normalization - -

Flatten - - MaxPooling1D - -

Dense Layer 16 ReLU Flatten - -

Dropout 0.4 - Dense Layer 32 ReLU

Batch Normalization - - Dense (Output Layer) 41 Softmax

Dense (Output Layer) 41 Softmax

This study proposes a robust MCCFF model based on the ResNet-50 architecture. The
MCCFF ResNet model is capable of handling 40 object classes, each with 1000 images.The
model utilizes sets of EEG images as input and employs encoders to extract features
in the time domain. The model architecture includes an initial layer of 1D convolution
with a kernel size of 7 × 7, a stride of 2, and 64 filters, using ReLU as the activation
function, followed by batch normalization and a dropout. The fourth and fifth layers
use 1D convolutions with a kernel size of 3 × 3, a stride of 1, and 64 filters each. Batch
normalization and dropout are applied between layers. The following layers use the same
convolution with 128 filters, and subsequent layers increase to 256 and 512 filters each. The
architecture concludes with a global pooling layer and a fully connected layer. The detailed
architecture is diagrammatically explained in Figure 4.

Figure 4. Proposed MCCFF model architecture based on ResNet-50.

The proposed MCCFF VGG model is structured into four blocks of layers. In the
first block, there are two layers of 3 × 3 1D convolutions with 64 filters each, followed by
dropout, batch normalization, and a max pooling layer with a pool size of 2 and a stride of 2.
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The second block includes one layers of 3 × 3 1D convolution with 128 filters, followed by
dropout, batch normalization, and a max pooling layer with the same pool size and stride.
The third block consists of one layers of 3 × 3 1D convolution with 256 filters, followed by
dropout and a max pooling layer with a pool size of 2 and a stride of 2. Each of these blocks
uses the ReLU activation function. The final block contains two fully connected layers,
each with 4096 dense units and dropout. The detailed architecture is diagrammatically
explained in Figure 5.

Figure 5. Proposed MCCFF model architecture based on VGG.

4. Experimental Results

This section presents the results of the classification performed in this study. A detailed
examination of the dataset was conducted using two different approaches across all seven
models, using EEG data without filtering and with filtering. In this study, the models were
rigorously validated using a 5-fold cross-validation technique. This technique partitions
the dataset into five subsets, where each subset serves as a validation set once, while the
remaining subsets are used for training. By rotating through all subsets for validation,
this approach provides a comprehensive evaluation of each model’s generalizability and
effectiveness. This methodological rigor enhances the study’s confidence in the reported
classification accuracies and ensures that the results are robust and statistically sound.

4.1. Results with a No-Filtering Approach

The complexity of EEG signals necessitates caution in preprocessing, as human-defined
methods can potentially degrade signal performance [65,66]. Prior research has shown
that achieving high performance on rapid-design EEG is only possible for a low number
of classes [5]. In the no-filtering approach, we utilized the complete dataset only by
excluding point 2, i.e., bandpass filtering from Section 3.2. All other preprocessing steps
were incorporated. The results achieved using this approach are shown in Table 6. It is
evident that the proposed MCCFF Net-50 and MCCFF VGG models outperformed the
others in terms of the maximum number of channels and window size. However, accuracy
degraded to chance with the traditional models, which validates the work reported in [52].
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Table 6. Results on non-filtered data. All results were validated using 5-fold cross validation leaving
one fold out.

Classifier Precision (%) Recall (%) F1 Score (%) Accuracy (%)

KNN 2.49 4.96 2.82 4.96
SVM 7.51 4.34 3.93 4.34
MLP 14.31 3.72 2.85 3.72

Proposed Models

LSTM 21.86 10.97 9.32 10.97
1d-CNN 47.369 15.96 13.591 15.960

MCCFF Net-50 48.11 22.94 20.53 22.94
MCCFF VGG 62.05 33.16 34.59 33.17

4.2. Results with Filtered Data

The data were filtered using the steps outlined in Section 3.2. Table 7 summarizes
the averaged results across various classifiers, revealing distinct performance patterns.
Traditional models such as KNN, SVM, and MLP achieved relatively lower precision, recall,
F1 scores, and accuracies, ranging from approximately 0.4% to 5.59%. In contrast, advanced
neural network models like LSTM and 1D CNN exhibited improved performance, with
LSTM achieving a precision of 47.96%, recall of 8.25%, F1 score of 5.86%, and accuracy
of 8.25%, while 1D CNN demonstrated a precision of 52.42%, recall of 13.0%, F1 score of
11.07%, and accuracy of 12.99%. MCCFF Net-50 achieved a precision of 44.34%, recall of
13.5%, F1 score of 8.73%, and accuracy of 13.50%, while MCCFF VGG achieved a precision
of 54.47%, recall of 14.57%, F1 score of 4.31%, and accuracy of 14.57%.

Table 7. Results achieved on filtered data. All the results were validated using 5-fold cross validation.

Classifier Precision (%) Recall (%) F1 Score (%) Accuracy (%)

KNN 40.0 4.9 3.4 4.96
SVM 5.1 4.34 4.1 4.34
MLP 13.5 5.59 6.51 5.59

Proposed Models

LSTM 47.96 8.25 5.86 8.25
1d-CNN 52.42 13.0 11.07 12.99

MCCFF Net-50 44.34 13.5 8.73 13.50
MCCFF VGG 54.47 14.57 4.31 14.57

5. Discussion
5.1. Effect of the Sensor Selection Strategy

The bio-semi device used for signal acquisition uses four main sensory channels (A,
B, C, and EXG), each equipped with 32 channels, except for EXG, which has 8. We used
sequential feature selection (SFS) based on a backward elimination approach for channel
selection [27]. Backward elimination eliminates the channels from the backward direction.
The first elimination removes the sensory EXG group with channels. In the subsequent
eliminations, eight channels were removed from each sensory group (A, B, and C), yielding
72, 48, and 24 channel configurations. In this way, SFS provided comprehensive coverage
across all areas of the brain. This selection approach yielded significant results, with
higher accuracies for 104 and 96 channels, whereas accuracy dropped notably with 72, 48,
and 24 channels. The detailed results are provided in the Supplementary Materials. The
accuracy trends of the 1D CNN, LSTM, and MCCFF models across a range of channels are
shown in Figures 6 and 7 for unfiltered and filtered data, respectively. Higher numbers
of channel configurations yielded superior accuracies across models, with MCCFF VGG
achieving accuracies of 14.57% and 7.0% on 104 and 96 channels, respectively, compared to
lower accuracies on fewer channels (e.g., 2.75% and 2.5% for MCCFF Net-50 and MCCFF
VGG, respectively on 72, 48, and 24 channels). These visualizations provide insights into the
various models’ behaviors with varying numbers of channels, reinforcing the robustness of
the MCCFF architectures in handling the complex temporal characteristics of EEG data.
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Figure 6. Accuracies of all the models for a 2500 ms time window and varying numbers of channels
established on non-filtered data.

Figure 7. Accuracies of all the models for a 2500 ms time window and varying numbers of channels
established on filtered data.

5.2. Effect of Window Sizes on Signal Accuracy

Figure 8 elucidates how varying window sizes influenced classifier performance.
Longer window sizes resulted in higher accuracy and vice-versa. The analysis encompassed
time-window slices of 2500 ms, 1500 ms, and 500 ms around events. Previous studies have
used 1500 ms time windows, starting at 0s from the stimulus onset. In this study, we used
time slices of −0.5 s before stimulus onset and 2.5 s, 1.5 s, and 0.5 s after stimulus onset to
demonstrate the effects of longer and shorter window sizes on the data. The usage of −0.5 s
before stimulus onset helps in capturing the baseline neural activity, thereby completing
the signal waveform. This significantly improved the performance of the models. When
shorter window sizes of 1.5 s and 0.5 s were used, crucial information needed for accurate
recognition was missed, leading to the observed drop in performance for all models shown
in Figure 8.



Sensors 2024, 24, 6965 14 of 17

Figure 8. Effects of varying window sizes on filtered data (Left) and non-filtered data (right).

5.3. Comparison

A comparative study of the state of the art with the proposed method is provided
in Table 8. Hari M Bharadwaj [32] achieved an accuracy of 17.6% on the same dataset
using EEGNet. The experimental results suggest that the accuracies of the models (k-NN,
SVM, and MLP) investigated in this study are in accordance with those reported in [32,52].
However, the proposed models following our multi-class, multi-channel feature fusion
technique significantly improved the accuracies by up to 33.17%.

Table 8. Comparative analysis of the state of the art and the proposed methodology.

Study Accuracy (%)

Hamad Ahmed et al. [52]
1DCNN 5.1%
Hari M. Bharadwaj et al. [32]
EEGNet 17.6%
Proposed Method
MCCFF Net-50 22.94%
MCCFF VGG 33.17%

6. Conclusions

The field of EEG signal classification has seen significant advancements with the
introduction of novel machine learning and deep learning approaches. However, due to the
inherent complexity and non-stationary nature of EEG signals, achieving high classification
accuracy remains challenging. Traditional models often struggle with the temporal and non-
linear characteristics of these signals, necessitating the development of more sophisticated
methods. The current study addresses these challenges by introducing the MCCFF-NET
50 and MCCFF-VGG models, which demonstrated substantial improvements in classifi-
cation accuracy. The experimental results clearly show that these proposed approaches
significantly outperform traditional models such as K-NN, SVM, and MLP, establishing
a new benchmark in the field of object classification using visual EEG signals. While
traditional models showed consistent but lower accuracies, the architectural enhancements
in LSTM and 1D CNN led to notable performance improvements. Furthermore, this study
revealed that the judicious selection of channels, covering the entire brain, significantly
impacted classification accuracy. Future work will focus on exploring more sophisticated
deep learning architectures and further optimizing preprocessing techniques. Additionally,
the investigation of real-time applications and the expansion of the dataset to include more
diverse stimuli could provide deeper insights and broader applicability in neuroscientific
research and clinical diagnostics. The integration of multimodal data and the leveraging of
transfer learning techniques also hold promise for future advancements in the field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24216965/s1.
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