Implementación de sanciones disciplinarias y penales para los casos de violencia en los momentos de conciliación en el Consultorio Jurídico
Tesis
Materias > Ciencias Sociales
Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Cerrado
Español
La presente investigación se encuentra basada en la necesidad que existe de analizar desde la perspectiva social y jurídica como prevenir el impacto y actuar ante violencia o agresiones físicas en el Centro de Conciliación de la Universidad Cooperativa de Colombia en el Consultorio Jurídico en la sede de Montería, un modelo de intervención en los casos en que los estudiantes necesiten apoyo en caso de ser agredidos verbal o físicamente buscando sanciones disciplinarias y penales buscando prevenir estos eventos con el fin de poder asegurar la tranquilidad de los usuarios como de los mismos alumnos, el objetivo El objetivo central de este trabajo de grado es poder llegar a desarrollar una propuesta buscando disminuir la violencia y agresiones físicas por parte de los usuarios en el momento que llegan al Centro de Conciliación del Consultorio Jurídico en la Universidad Cooperativa de Colombia – Sede Montería, la inquietud se da es porque en muchas ocasiones se dan enfrentamientos entre las partes, algunos llegan con armas corta punzantes, armas de fuego o se puede dar casos de violencia física, involucrando al conciliador y ocasiones este se ve amenazado en su vida, desafortunadamente el estudiante no puede hacer nada ya que no tiene herramientas jurídicas para poder sancionar a este tipo de personas ya sea de forma disciplinaria o penal. Los enfoques teóricos, contiene el análisis y se fundamenta en una visión: filosófica, sociológica y legal relacionado con la conciliación y como prevenir posibles daños tanto para los usuarios como para los conciliadores en casos de agresión por parte de alguno de los participantes buscando una la articulación de Ley 640 del 2001 con las normas penales y disciplinarias a disposición. La metodología de investigación que se utilizó la descriptiva de tipo cualitativo y la interpretación del derecho de los estudiantes que prestan su servicio de práctica en el Consultorio Jurídico. Entre los resultados que se encontró las contradicciones, deficiencias, omisiones entre las normas o el sistema jurídico para la protección de los estudiantes en el caso de presentarse algún hecho violento por parte de algún usuario. Como resultado se evidencia que los estudiantes en muchas ocasiones se sienten amenazas porque uno de los usuarios puede estar armado con armas corto punzantes o armas de fuego, esto ha implicado que los estudiantes y los mismos usuarios no se sientan seguras. Se puede concluir que, ante los objetivos propuestos en esta investigación ante las diferentes situaciones encontradas, no puede olvidarse que las personas cuando acuden a un centro de conciliación, es porque buscan no llegar a instancias judiciales pero que es evidente que a veces se sale de las manos tanto por parte del estudiante y la misma administración del consultorio jurídico situaciones violentas buscando proteger a los estudiantes y la comunidad general.
metadata
Gonzalez Luna, Arturo Francisco
mail
arturogonzalez.luna@gmail.com
(2022)
Implementación de sanciones disciplinarias y penales para los casos de violencia en los momentos de conciliación en el Consultorio Jurídico.
Masters thesis, Universidad Europea del Atlántico.
Resumen
La presente investigación se encuentra basada en la necesidad que existe de analizar desde la perspectiva social y jurídica como prevenir el impacto y actuar ante violencia o agresiones físicas en el Centro de Conciliación de la Universidad Cooperativa de Colombia en el Consultorio Jurídico en la sede de Montería, un modelo de intervención en los casos en que los estudiantes necesiten apoyo en caso de ser agredidos verbal o físicamente buscando sanciones disciplinarias y penales buscando prevenir estos eventos con el fin de poder asegurar la tranquilidad de los usuarios como de los mismos alumnos, el objetivo El objetivo central de este trabajo de grado es poder llegar a desarrollar una propuesta buscando disminuir la violencia y agresiones físicas por parte de los usuarios en el momento que llegan al Centro de Conciliación del Consultorio Jurídico en la Universidad Cooperativa de Colombia – Sede Montería, la inquietud se da es porque en muchas ocasiones se dan enfrentamientos entre las partes, algunos llegan con armas corta punzantes, armas de fuego o se puede dar casos de violencia física, involucrando al conciliador y ocasiones este se ve amenazado en su vida, desafortunadamente el estudiante no puede hacer nada ya que no tiene herramientas jurídicas para poder sancionar a este tipo de personas ya sea de forma disciplinaria o penal. Los enfoques teóricos, contiene el análisis y se fundamenta en una visión: filosófica, sociológica y legal relacionado con la conciliación y como prevenir posibles daños tanto para los usuarios como para los conciliadores en casos de agresión por parte de alguno de los participantes buscando una la articulación de Ley 640 del 2001 con las normas penales y disciplinarias a disposición. La metodología de investigación que se utilizó la descriptiva de tipo cualitativo y la interpretación del derecho de los estudiantes que prestan su servicio de práctica en el Consultorio Jurídico. Entre los resultados que se encontró las contradicciones, deficiencias, omisiones entre las normas o el sistema jurídico para la protección de los estudiantes en el caso de presentarse algún hecho violento por parte de algún usuario. Como resultado se evidencia que los estudiantes en muchas ocasiones se sienten amenazas porque uno de los usuarios puede estar armado con armas corto punzantes o armas de fuego, esto ha implicado que los estudiantes y los mismos usuarios no se sientan seguras. Se puede concluir que, ante los objetivos propuestos en esta investigación ante las diferentes situaciones encontradas, no puede olvidarse que las personas cuando acuden a un centro de conciliación, es porque buscan no llegar a instancias judiciales pero que es evidente que a veces se sale de las manos tanto por parte del estudiante y la misma administración del consultorio jurídico situaciones violentas buscando proteger a los estudiantes y la comunidad general.
| Tipo de Documento: | Tesis (Masters) |
|---|---|
| Palabras Clave: | Conciliación, Judicantes, Protección, Sanciones, Sociedad |
| Clasificación temática: | Materias > Ciencias Sociales |
| Divisiones: | Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster |
| Depositado: | 31 Oct 2023 23:30 |
| Ultima Modificación: | 31 Oct 2023 23:30 |
| URI: | https://repositorio.unib.org/id/eprint/1377 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a href="/17880/1/nutrients-17-03613.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background/Objectives: Estimating energy and macronutrients from food images is clinically relevant yet challenging, and rigorous evaluation requires transparent accuracy metrics with uncertainty and clear acknowledgement of reference data limitations across heterogeneous sources. This study assessed ChatGPT-5, a general-purpose vision-language model, across four scenarios differing in the amount and type of contextual information provided, using a composite dataset to quantify accuracy for calories and macronutrients. Methods: A total of 195 dishes were evaluated, sourced from Allrecipes.com, the SNAPMe dataset, and Home-prepared, weighed meals. Each dish was evaluated under Case 1 (image only), Case 2 (image plus standardized non-visual descriptors), Case 3 (image plus ingredient lists with amounts), and Case 4 (replicates Case 3 but excluding the image). The primary endpoint was kcal Mean Absolute Error (MAE); secondary endpoints included Median Absolute Error (MedAE) and Root Mean Square Error (RMSE) for kcal and macronutrients (protein, carbohydrates, and lipids), all reported with 95% Confidence Intervals (CIs) via dish-level bootstrap resampling and accompanied by absolute differences (Δ) between scenarios. Inference settings were standardized to support reproducibility and variance estimation. Source stratified analyses and quartile summaries were conducted to examine heterogeneity by curation level and nutrient ranges, with additional robustness checks for error complexity relationships. Results and Discussion: Accuracy improved from Case 1 to Case 2 and further in Case 3 for energy and all macronutrients when summarized by MAE, MedAE, and RMSE with 95% CIs, with absolute reductions (Δ) indicating material gains as contextual information increased. In contrast to Case 3, estimation accuracy declined in Case 4, underscoring the contribution of visual cues. Gains were largest in the Home-prepared dietitian-weighed subset and smaller yet consistent for Allrecipes.com and SNAPMe, reflecting differences in reference curation and measurement fidelity across sources. Scenario-level trends were concordant across sources, and stratified and quartile analyses showed coherent patterns of decreasing absolute errors with the provision of structured non-visual information and detailed ingredient data. Conclusions: ChatGPT-5 can deliver practically useful calorie and macronutrient estimates from food images, particularly when augmented with standardized nonvisual descriptors and detailed ingredients, as evidenced by reductions in MAE, MedAE, and RMSE with 95% CIs across scenarios. The decline in accuracy observed when the image was omitted, despite providing detailed ingredient information, indicates that visual cues contribute meaningfully to estimation performance and that improvements are not solely attributable to arithmetic from ingredient lists. Finally, to promote generalizability, it is recommended that future studies include repeated evaluations across diverse datasets, ensure public availability of prompts and outputs, and incorporate systematic comparisons with non-artificial-intelligence baselines.
Marcela Rodríguez- Jiménez mail , Gustavo Daniel Martín-del-Campo-Becerra mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Jorge Crespo-Álvarez mail jorge.crespo@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,
Rodríguez- Jiménez
<a href="/17885/1/s41598-025-26052-7.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Mango is one of the most beloved fruits and plays an indispensable role in the agricultural economies of many tropical countries like Pakistan, India, and other Southeast Asian countries. Similar to other fruits, mango cultivation is also threatened by various diseases, including Anthracnose and Red Rust. Although farmers try to mitigate such situations on time, early and accurate detection of mango diseases remains challenging due to multiple factors, such as limited understanding of disease diversity, similarity in symptoms, and frequent misclassification. To avoid such instances, this study proposes a multimodal deep learning framework that leverages both leaf and fruit images to improve classification performance and generalization. Individual CNN-based pre-trained models, including ResNet-50, MobileNetV2, EfficientNet-B0, and ConvNeXt, were trained separately on curated datasets of mango leaf and fruit diseases. A novel Modality Attention Fusion (MAF) mechanism was introduced to dynamically weight and combine predictions from both modalities based on their discriminative strength, as some diseases are more prominent on leaves than on fruits, and vice versa. To address overfitting and improve generalization, a class-aware augmentation pipeline was integrated, which performs augmentation according to the specific characteristics of each class. The proposed attention-based fusion strategy significantly outperformed individual models and static fusion approaches, achieving a test accuracy of 99.08%, an F1 score of 99.03%, and a perfect ROC-AUC of 99.96% using EfficientNet-B0 as the base. To evaluate the model’s real-world applicability, an interactive web application was developed using the Django framework and evaluated through out-of-distribution (OOD) testing on diverse mango samples collected from public sources. These findings underline the importance of combining visual cues from multiple organs of plants and adapting model attention to contextual features for real-world agricultural diagnostics.
Muhammad Mohsin mail , Muhammad Shadab Alam Hashmi mail , Irene Delgado Noya mail irene.delgado@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Nagwan Abdel Samee mail , Imran Ashraf mail ,
Mohsin
en
close
Food security is a universal need worldwide. This study explored the relationship between food security and adherence to the Mediterranean diet in the context of the DELICIOUS project. A survey involving 2,011 parents of children and adolescents aged 6–17 years was conducted. Adherence to the Mediterranean diet was assessed through the KIDMED score. Information regarding the ease of accessing Mediterranean foods, economic allowance, employment and residence was collected. Logistic regressions analyses were performed to test the associations. Individuals living in rural areas and reporting difficulty in obtaining all studied foods were less likely to follow the Mediterranean diet. Higher adherence was associated with a household monthly income higher than €4000. No associations with family status and no differences across countries were found. The progressive shift away from the Mediterranean diet may depend not only on cultural preferences for unhealthier, industrial alternatives but also on family budgets and food accessibility.
Francesca Scazzina mail , Alice Rosi mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Carlos Poveda-Loor mail , Osama Abdelkarim mail , Mohamed Aly mail , Evelyn Frias-Toral mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Lorenzo Monasta mail , Nadia Paladino mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,
Scazzina
<a href="/17890/1/PIIS2001037025004581.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Enhancing detection of epileptic seizures using transfer learning and EEG brain activity signals
Epileptic seizures are neurological events characterized by sudden and excessive electrical discharges in the brain, leading to disruptions in brain function. Epileptic seizures can lead to life-threatening situations such as status epilepticus, which is characterized by prolonged or recurrent seizures and may lead to respiratory distress, aspiration pneumonia, and cardiac arrhythmias. Therefore, there is a need for an automated approach that can efficiently diagnose epileptic seizures at an early stage. The primary objective of this study is to develop a highly accurate approach for the early diagnosis of epileptic seizures. We use electroencephalography (EEG) signal data based on different brain activities to conduct experiments for epileptic seizure detection. For this purpose, a novel transfer learning technique called random forest-gated recurrent unit (RFGR) is proposed. The EEG brain activity signal data is fed into the RFGR model to generate a new feature set. The newly generated features are based on the class prediction probabilities extracted by the RFGR and are utilized to train models. Extensive experiments are carried out to investigate the performance of the proposed approach. Results demonstrate that the RFGR, when used with the random forest model, outperforms state-of-the-art techniques, achieving a high accuracy of 99.00 %. Additionally, explainable artificial intelligence analysis is utilized to provide transparent and understandable explanations of the decision-making processes of the proposed approach.
Erol Kına mail , Ali Raza mail , Prudhvi Chowdary Are mail , Carmen Lilí Rodríguez Velasco mail carmen.rodriguez@uneatlantico.es, Julién Brito Ballester mail julien.brito@uneatlantico.es, Isabel de la Torre Diez mail , Naveed Anwer Butt mail , Imran Ashraf mail ,
Kına
<a class="ep_document_link" href="/17858/1/s41598-025-18979-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Detection and classification of brain tumor using a hybrid learning model in CT scan images
Accurate diagnosis of brain tumors is critical in understanding the prognosis in terms of the type, growth rate, location, removal strategy, and overall well-being of the patients. Among different modalities used for the detection and classification of brain tumors, a computed tomography (CT) scan is often performed as an early-stage procedure for minor symptoms like headaches. Automated procedures based on artificial intelligence (AI) and machine learning (ML) methods are used to detect and classify brain tumors in Computed Tomography (CT) scan images. However, the key challenges in achieving the desired outcome are associated with the model’s complexity and generalization. To address these issues, we propose a hybrid model that extracts features from CT images using classical machine learning. Additionally, although MRI is a common modality for brain tumor diagnosis, its high cost and longer acquisition time make CT scans a more practical choice for early-stage screening and widespread clinical use. The proposed framework has different stages, including image acquisition, pre-processing, feature extraction, feature selection, and classification. The hybrid architecture combines features from ResNet50, AlexNet, LBP, HOG, and median intensity, classified using a multilayer perceptron. The selection of the relevant features in our proposed hybrid model was extracted using the SelectKBest algorithm. Thus, it optimizes the proposed model performance. In addition, the proposed model incorporates data augmentation to handle the imbalanced datasets. We employed a scoring function to extract the features. The Classification is ensured using a multilayer perceptron neural network (MLP). Unlike most existing hybrid approaches, which primarily target MRI-based brain tumor classification, our method is specifically designed for CT scan images, addressing their unique noise patterns and lower soft-tissue contrast. To the best of our knowledge, this is the first work to integrate LBP, HOG, median intensity, and deep features from both ResNet50 and AlexNet in a structured fusion pipeline for CT brain tumor classification. The proposed hybrid model is tested on data from numerous sources and achieved an accuracy of 94.82%, precision of 94.52%, specificity of 98.35%, and sensitivity of 94.76% compared to state-of-the-art models. While MRI-based models often report higher accuracies, the proposed model achieves 94.82% on CT scans, within 3–4% of leading MRI-based approaches, demonstrating strong generalization despite the modality difference. The proposed hybrid model, combining hand-crafted and deep learning features, effectively improves brain tumor detection and classification accuracy in CT scans. It has the potential for clinical application, aiding in early and accurate diagnosis. Unlike MRI, which is often time-intensive and costly, CT scans are more accessible and faster to acquire, making them suitable for early-stage screening and emergency diagnostics. This reinforces the practical and clinical value of the proposed model in real-world healthcare settings.
Roja Ghasemi mail , Naveed Islam mail , Samin Bayat mail , Muhammad Shabir mail , Shahid Rahman mail , Farhan Amin mail , Isabel de la Torre mail , Ángel Gabriel Kuc Castilla mail angel.kuc@uneatlantico.es, Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx,
Ghasemi
