
Received 28 October 2023, accepted 3 January 2024, date of publication 16 January 2024, date of current version 1 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3354955

Detecting Pragmatic Ambiguity in Requirement
Specification Using Novel Concept Maximum
Matching Approach Based on
Graph Network
KHADIJA ASLAM 1, FAIZA IQBAL 2, AYESHA ALTAF 2, NAVEED HUSSAIN 3,
MÓNICA GRACIA VILLAR4,5,6, EMMANUEL SORIANO FLORES 4,7,8,
ISABEL DE LA TORRE DÍEZ 9, AND IMRAN ASHRAF 10
1Strategic Systems International, Lahore 54000, Pakistan
2Department of Computer Science, University of Engineering and Technology (UET), Lahore 54890, Pakistan
3Department of Software Engineering, University of Central Punjab, Lahore 54700, Pakistan
4Universidad Europea del Atlántico, 39011 Santander, Spain
5Universidad Internacional Iberoamericana Arecibo, Sector Palaches 00613, Puerto Rico
6Universidade Internacional do Cuanza, Kuito, Bié, Angola
7Universidad Internacional Iberoamericana, Campeche 24560, Mexico
8Fundación Universitaria Internacional de Colombia, Bogotá 111321, Colombia
9Department of Signal Theory, Communications and Telematics Engineering, Unviersity of Valladolid, 47011 Valladolid, Spain
10Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Corresponding authors: Faiza Iqbal (faiza.iqbal@uet.edu.pk) and Imran Ashraf (ashrafimran@live.com)

This research was supported by the European University of Atlantic.

ABSTRACT Requirements specifications written in natural language enable us to understand a program’s
intended functionality, which we can then translate into operational software. At varying stages of
requirement specification, multiple ambiguities emerge. Ambiguities may appear at several levels including
the syntactic, semantic, domain, lexical, and pragmatic levels. The primary objective of this study is to
identify requirements’ pragmatic ambiguity. Pragmatic ambiguity occurs when the same set of circumstances
can be interpreted in multiple ways. It requires consideration of the context statement of the requirements.
Prior research has developed methods for obtaining concepts based on individual nodes, so there is room for
improvement in the requirements interpretation procedure. This research aims to develop a more effective
model for identifying pragmatic ambiguity in requirement definition. To better interpret requirements,
we introduced the Concept MaximumMatching (CMM) technique, which extracts concepts based on edges.
The CMM technique significantly improves precision because it permits a more accurate interpretation of
requirements based on the relative weight of their edges. Obtaining an F-measure score of 0.754 as opposed
to 0.563 in existing models, the evaluation results demonstrate that CMM is a substantial improvement over
the previous method.

INDEX TERMS Pragmatic ambiguity, natural language, requirements specification, knowledge base,
ambiguity detection.

I. INTRODUCTION
Requirement engineering (RE) process facilitates the creation
of consumer-centric products. Utilizing RE activities captures

The associate editor coordinating the review of this manuscript and

approving it for publication was Alicia Fornés .

the complexities of requirements. These activities include
requirement analysis, requirement elicitation, requirement
specification, requirement validation, and requirement man-
agement [3]. Typically, requirements are described using
natural language, which can result in ambiguity. Ambiguity
is the misinterpretation of requirements that results in

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 15651

https://orcid.org/0000-0001-8808-5317
https://orcid.org/0000-0002-5536-8764
https://orcid.org/0000-0001-6446-4945
https://orcid.org/0000-0003-3874-2088
https://orcid.org/0000-0002-8747-5679
https://orcid.org/0000-0003-3134-7720
https://orcid.org/0000-0002-8271-6496
https://orcid.org/0000-0002-0023-1891

K. Aslam et al.: Detecting Pragmatic Ambiguity in Requirement Specification

TABLE 1. Research gap in existing studies.

a product that does not meet the expectations of the
stakeholders. Establishing clear and accurate connections
between requirements can lead to the development of a
product that is both accurate and meets the necessary criteria
for acceptance Numerous approaches help bridge the gap
between informal and formal requirements specification,
such as Object Constraint Language (OCL), B method,
Z language, and Vienna Development Method (VDM),
among others [4], [5]. However, further enhancements
are necessary to detect requirement ambiguities. Detecting
ambiguities at an early stage is the greatest challenge that can
help reduce time, effort, and cost. Typically, requirements are
specified in natural language, resulting in several linguistic
ambiguities [6]. These ambiguities are classified as syntactic,
semantic, lexical, and pragmatic ambiguity, respectively [7].
The sentence structure determines syntactic ambiguity. It is

also referred to as structural ambiguity and occurs when
a given sentence can be interpreted in multiple ways [8].
Consider the sentence ‘‘large toy factory’’ as an example.
This case provides two interpretations, including (big toy)
factory and big (toy factory) [9]. Lexical ambiguity arises
when a word possesses multiple meanings or when different
origins employ the identically spelled word in written and
spoken language. For instance, the word ‘‘bank’’ can mean
both financial institution and riverbank. Semantic ambiguity
arises when a sentence’s meaning can be constructed in
numerous ways depending on its context [9]. Consider the
statement, ‘‘Every administrative member has a system login
number’’. There are two ways to interpret the context of
this sentence: either every administrative member has a
unique system login number, or, every administrative member
has the same system login number. In pragmatic ambiguity,
a sentence can have multiple context-dependent meanings.
True meaning interpretation requires domain, situation,
background knowledge, and contextual understanding [10].
Consider the phrase ‘‘User access will be restricted/blocked
due to violation.’’ Here, pragmatic ambiguity arises in the
form of the question, What mechanism will be used to
block user access? IP/MAC address/user account bans, for
example? It has been determined that existing approaches
do not account for all concepts and therefore cannot achieve
greater precision. Similar kinds of ambiguities can be
detected while analyzing product recommender systems [11]
and spam reviews [12]. Comparing existing studies and
highlighting research gaps, Table 1 illustrates the research
problem.

Practical ambiguity detection enhances comprehension of
the actual requirement. In requirement specifications, such
pragmatic ambiguity may arise, leading to the presentation
of a single requirement’s concept in multiple ways. The

purpose of this research is to identify pragmatic ambiguity
in requirement specifications using a knowledge base model
as a foundation [1], [2].
Existing approaches utilize the shortest path technique,

which activates highly weighted concepts in a weighted graph
to achieve requirements interpretation. Activating heavily
weighted concepts in graphs indicates that concepts in
domain documents are more related. Based on a couple of
neighboring nodes with higher occurrences in domain knowl-
edge graphs, the existing shortest path algorithm retrieved
more matching results. Significant inaccuracy in requirement
interpretation is the limitation of these techniques. It requires
additional enhancements to detect pragmatic ambiguity to
improve the accuracy of the requirements interpretation pro-
cess and generate meaningful interpretations. It is necessary
to design an approach that can retrieve concepts based on
multiple nodes and their edges to effectively detect pragmatic
ambiguity and improve overall precision.

The proposed model extended the existing graph-based
modeling approach that is based on the shortest path
algorithm. Due to its reliance on single-node matching, the
existing method lacks a high degree of precision. This study
proposed a Concept Maximum Matching (CMM) method
based on edges and nodes. CMM retrieves concepts based
on edges to achieve a more precise interpretation of require-
ments. A set of requirements and multiple domain documents
are inputs for the designed method. The requirements are
exhaustively researched in the available domain documents,
resulting in a variety of interpretations from each domain
document. The output represents the similarity between
the retrieved interpretations, which is used to determine
whether a given set of requirements is ambiguous. The greater
similarity between retrieved interpretations indicates require-
ments with no ambiguity, and vice versa. The proposed
CMM method overcomes the shortcomings of the existing
method and achieves a higher accuracy score. Regarding the
pragmatic interpretation of requirements, the operation of
the proposed CMM approach has been compared to existing
approaches. This study makes the following contributions

1) Proposed CMM approach which utilized multiple
nodes and edges of concept knowledge graphs,

2) Developed an algorithm to build concept-based knowl-
edge graphs using domain documents,

3) Evaluated and analyzed the effectiveness of the CMM
approach in efficiently detecting pragmatic ambiguity
in requirement specifications and improving the accu-
racy of the requirement interpretation process

The rest of the paper is organized as follows. The
introduction section is followed by the literature review
Section II which describes existing work on ambiguity

15652 VOLUME 12, 2024

K. Aslam et al.: Detecting Pragmatic Ambiguity in Requirement Specification

TABLE 2. Summary of existing literature in the domain of ambiguity detection.

detection in requirement documents. Section III presents the
proposed CMM approach and discusses its various important
elements. This section demonstrates domain knowledge
graph representation and the weighted graph construction
process as well. The evaluation of the proposed approach
is presented in Section IV. This section also describes a
comparative analysis of CMM with existing approaches.
Finally, Section V concludes the paper and presents future
directions.

II. LITERATURE REVIEW
There are a variety of classification approaches for ambigu-
ities in natural language [26]. Lexical ambiguity, semantic
ambiguity, pragmatic ambiguity, and syntactic ambiguity
are the primary types of ambiguity. In lexical ambiguity,
a single word has multiple meanings. It occurs when two
different origins use the same written and spoken spellings
of a word [27]. Structure ambiguity is another name for
syntactic ambiguity, which depends on sentence structure-
based ambiguity. It occurs when a given sentence can be
interpreted in multiple different ways [28], [29]. There is
semantic ambiguity when the meaning of a sentence can
be interpreted in multiple ways based on its context [30].
While in pragmatic ambiguity, a sentence can have multiple
contextual meanings [31], [32].

It requires domain, situation, context, and background
knowledge to comprehend the actual meaning. Detection
and interpretation of pragmatic ambiguity in requirement
specification documents can maximize comprehension of
the actual requirement. The impact of pragmatic ambigu-
ity in requirement specification documents has not been
exhaustively analyzed in the existing literature. This kind

of ambiguities can be highlighted in diverse domains e.g.
anomaly detection and secure networks [33], [34], [35],
[36], blockchain models [35], [37], [38]. Table 2 discusses
pragmatic ambiguity detection approaches in requirement
documents. Existing studies on the concept of pragmatic
ambiguity detection, employed techniques, and existing
limitations are elaborated and analyzed.

Different computerized tools of pragmatics are used in nat-
ural language tasks [39], so the detection of pragmatic ambi-
guity is crucial to get precise responses. The research [40]
utilizes word embedding algorithms to discover and rec-
ognize ambiguous terms within requirements. Additionally,
connected data is used to address the identified ambiguities.
The efficiency of the suggested tool was evaluated using
open-source software specification papers. The performance
of the tool in detecting and correcting ambiguity was
compared to that of people. Similarly, the authors [21]
propose TaskLint, a system that identifies errors with task
instructions automatically. TaskLint employs a variety of
existing natural language processing (NLP) methods to
recognize words and phrases that may indicate worker
uncertainty. This method is comparable to code analysis tools
known as ‘‘linters’’ that identify code characteristics that
may signal the presence of flaws. The evaluation of TaskLint
utilizing novice-created task instructions validates the ability
of static analysis techniques to increase task clarity and
boost result correctness. Nonetheless, the review identifies a
number of obstacles that must be addressed.

Based on an analysis of existing literature and prevalent
limitations, it has been determined that five different
approaches are used to detect pragmatic ambiguity such
as shortest-path search algorithm [1], [2], machine learning

VOLUME 12, 2024 15653

K. Aslam et al.: Detecting Pragmatic Ambiguity in Requirement Specification

FIGURE 1. Working flow of the proposed CMM approach.

and heuristics [8], [40], word embedding [41], knowledge
base approach [13] and controlled language [8], [40]. The
precision and recall of most of these existing techniques are
provided in Table 2. It is necessary to develop a method
for detecting pragmatic ambiguity to remove the complexity
of requirements based on connecting related concepts using
multiple concepts matching [42]. It is necessary to have
a domain knowledge graph with weighted edges to utilize
available connecting paths.

III. PROPOSED CONCEPT MAXIMUM MATCHING
APPROACH
The CMM provides the greatest similarity and relationship
between concepts. We have modeled the CMM algorithm
using edge weight. This method retrieves concepts based
on their edges for improved interpretation of requirements.
As stated previously, pragmatic ambiguity focuses on
the context specification of the requirements; therefore,
the interpretation of the requirements is contingent on the
reader’s prior knowledge. Based on their prior knowledge,
various readers interpret a concept differently. Existing
methods [1], [2] generate artificial graph-based subjects to
model background and domain knowledge. After construct-
ing the domain knowledge graph (using the provided domain
documents), the shortest path is used to determine the true
relationship between the given requirements. To achieve the
interpretation of requirements, the shortest path activates
heavily weighted concepts in a weighted graph. Activating

heavily weighted concepts in graphs indicates that concepts
in domain documents are more related. Existing studies were
designed to retrieve concepts based on single nodes, which
failed to achieve improved accuracy, necessitating additional
enhancements to the requirements interpretation process.

In comparison to the existing shortest path algorithm,
which retrieved matching results based on a couple of
neighboring nodes with higher occurrences in domain
knowledge graphs, the proposed algorithm retrievesmatching
results based on a larger number of nodes with higher
occurrences. The proposed CMM method retrieves concepts
based on edges for improved interpretation of requirements.
Figure 1 depicts the workflow of the proposed CMM
method for determining pragmatic ambiguity. CMM accepts
a set of requirements and multiple domain documents as
input, with the requirements being looked up in the domain
documents. It then determines whether the given set of
requirements is ambiguous or unambiguous based on the
degree of similarity between the retrieved interpretations. The
greater similarity between retrieved interpretations indicates
unambiguous requirements, whereas lower similarity values
indicate ambiguous requirements [41].

A. DOMAIN KNOWLEDGE GRAPH REPRESENTATION
To construct a domain knowledge graph, Algorithm 1
requires domain documents as input. The designed algorithm
returns a relational graph that includes all document concepts.

15654 VOLUME 12, 2024

K. Aslam et al.: Detecting Pragmatic Ambiguity in Requirement Specification

TABLE 3. Description of notations used for the model.

In a domain knowledge graph, nodes represent concepts
while edges indicate the connection between nodes.

B. WEIGHTED GRAPH CONSTRUCTION
A weighted graph consists of nodes, edges, and weight of
nodes G = (V ,E,W). These notations are described in
Table 3.

1) NODES
All the terms used in domain documents are called nodes and
are also known as concepts. Stop words like conjunctions,
pronouns, articles, and prepositions are not included in a
set of nodes. Stop words provide the structure of a sentence
whereas we need to focus on the content of concepts due to
which we have not considered the stop words. Node set is
represented as T = t1, t2, t3tn. T = T − �, where �

represents set of stop words. Moreover, we have transformed
each term into amorphological root to retrieve basic concepts,
for example, detection and detector. Here both of these terms
share the same concept that is detected. The nodes function
is labeled as $: V → T .

2) EDGES
Edges are used to connect different nodes and provide
connections between them. These have co-occurrence in
related nodes with each other inside the graph. Edge enables
the direction of orders within connecting nodes. Edges in our
graph are represented as E = (vi, vj).
To understand this, consider an example: Here R represents

a requirement and R′ represents its concepts.
R= ‘‘Systems supporting OM should track the changes made
to the status of case records as a result of changes in the case
definition’’.
R’ = {‘system’, ‘support, ‘OM, ‘should, ‘track, ‘change,
‘made, ‘status, ‘case, ‘record, ‘result, ‘change’, ‘case’,’
definition’};
The co-occurrences of stem associated with edges in this
graph are ‘system’, ‘support’), (‘support’, ‘OM’), (‘OM’,
‘should’), (‘track’, ‘change), (‘change’, ‘made’), (‘made’,
‘status’), (‘status’, ‘case’), (‘case’, ‘record’), (‘record’,
‘result’), (‘result’, ‘change’), (‘change’, ‘case’), (‘case’,
’definition’)}. In the directed graph direction of the edge set
matters so (‘system’, ‘support’) and (‘support’, ‘system’) will
be considered different.

Algorithm 1 : BuildEdge− Graph(D, �)
Input : (D, �)
Output : G

1: D,V,E,W← ∅
2: D← PRE-PROCESS (D,�)
3: V ← BUILD-Edge-NODES (D)
4: E,W ← BUILD-EDGES (D)
5: Return G← {V,E,W}

Algorithm 2 Pre-Process Algorithm (DD, �)
Input : (DD, �)
Output : DD)

1: (DD)← ∅
2: for S ϵ DD do
3: S← (s /∈ �)
4: DD← DD ∪ S
5: end for
6: Return DD

C. WEIGHT FUNCTION
The weight function is used to calculate the count of
co-occurrences of nodes connected together with each other
inside domain documents. We have a function called χ :

T × T → N that counts how often two nodes occur together.
Each connection between nodes in a graph has a number

based on a weight function called w(e) = 1
χ (L(vi),L(vj))

.
For any connection (vi, vj), the weight is calculated as

w(e) = 1 divided by the number of times nodes L(vi) L(vj)
appear together, which is represented by χ .

Every connection in the graph represents nodes that
co-occur in the original documents. If there’s a connection,
it means those nodes appeared together at least once.

χ (L(vi),L(vj)) > 0, is always greater than zero because
an edge in the graph only exists when the two-word nodes
it connects have been found together in the original set of
documents.

D. KNOWLEDGE GRAPH ALGORITHM
The CMM approach has been represented using a knowledge
graph algorithm that utilizes Edge-Graph, pre-process, build-
nodes, sentence path search, and build-edge algorithms.
Algorithm 1 represents a graph construction algorithm that
describes steps used to produce an edge-graph representation
from a given input.

Algorithm 2 takes domain document DD including stop
words�. We have omitted all stop words, as we need to know
the context rather than the structure of the sentence. Once stop
words are omitted, obtained set of words that are used inside
the document, are transformed into morphological roots.
For example, the domain sentence is ‘‘Application shows
products based on collaborative filters’’. This step of the
algorithm transforms all sentences in the domain document
in the following way.
S = {‘Application’, ‘show, ‘product, ‘collaborate‘, ‘filter’ };

VOLUME 12, 2024 15655

K. Aslam et al.: Detecting Pragmatic Ambiguity in Requirement Specification

Algorithm 3 Build-Nodes Algorithm DD

Input : DD Output : V
1: V← ∅
2: for S ϵDD do
3: sϵS
4: if s̄ /∈ V then
5: V← V ∪ s
6: end if
7: end for
8: Return V

Algorithm 4 Build-Edges Algorithm (DD)

Input: DD
Output: E, W
1: E,W ,X ← ∅
2: V ← ∅
3: for S ∈ DD do
4: for sh, sk ∈ S, k = h+ 1 do
5: if (sh, sk) /∈ E then
6: e← (sh, sk)
7: E ← E ∪ {e}
8: W [e],X [e]← 1
9: else
10: X [e]← X [e]+ 1
11: end if
12: end for
13: end for
14: for W [e] ∈ W do
15: W [e]← 1

X [e]
16: end for
17: return E, W

After performing the first step, we have added each unique
node in the set of vertices as used inside the document
as represented in Algorithm 3. New stems found in the
document will be updated in a set of vertices. This step of
the algorithm scans all sentences to find unique nodes.

Algorithm 4 represents the last step of the construction
domain knowledge graph which creates edges E to the graph
and a weight vector W . For every pair of nodes in each
sentence of the document set DD, an edge is formed in the
graph. To calculate the weights in vectorW , we use a support
vector X . Each element in X corresponds to an edge and
keeps track of howmany times the connected nodes co-occur.
When a new edge e is introduced, X [e] is set to 1. If a co-
occurrence is detected for which an edge already exists, the
corresponding X [e] is incremented by 1. In the final step of
the process, we create the weight vector W by taking the
reciprocal of each element in X.

Algorithm 4 takes domain documents D1,D2,D3DN
as an input. The domain document set is retrieved from
different web search engines (e.g., Yahoo, Google Scholar,
Bing, and Google). The relevancy of the domain documents

FIGURE 2. Building domain knowledge graph.

is manually verified. Here we briefly describe the process
of the algorithm to build a graph from domain documents
automatically, all details are given in paper [2]. After taking
documents, the stop words are omitted and each term is
transformed into a morphological root to retrieve basic
concepts (called stems). After that, obtain the set of stem
construct graphs for all concepts, which are used in domain
documents, and show the association among concepts with
edges. Figure 2 shows the process of edges-based graph
construction.

Figure 2 represents an example in which nodes and the
association of edges are presented. Edges show the number
of co-occurrences of terms with edges.

E. BUILD SHORTEST PATH BASED ON NODE AND EDGE
The complete working procedure of the CMM approach is
given in Algorithm 5. It works in the following steps.
Step 1: UPDATE-NODES updates the newly found nodes of
Requirement in existing graphs.
Step 2: BUILD-MIN-PATH returns all sub-paths identified
by the shortest path algorithm as nodes that co-occur in
related nodes within the graph. On finding a new edge,
construct the path and compute the edge weights.
Step 3: BUILD-EXT-PATH extends with those paths that
have a greater weight in the build-min-path algorithm.
As co-occurrence increases, the relationship between nodes
becomes stronger. Retrieves all newly created sub-paths that
are direct with this path.

15656 VOLUME 12, 2024

K. Aslam et al.: Detecting Pragmatic Ambiguity in Requirement Specification

Algorithm 5 Sentence Path Search (R, V, E, W, X)

Input : (R, V, E, W, X)
Output:EE

1: P← ∅
2: EE← EdgesPath
3: V← UPDATE − NODES(R,V)
4: P← BUILD-MIN-PATH(R,V,E,W)
5: EP← BUILD-EXT-PATH (P, V, E, W)
6: EE← BUILD-EDGES-PATH (P, V, E, W)
7: Return EE

UPDATE-NODES, BUILD-MIN-PATH and BUILD-
EXT-PATH have been described in existing work [1], [2].
This work contributes to the previous work by Ferrari et al.
[1], [2]. For BUILD-EDGES-PATH, Algorithm 6 represents
the method for constructing the entire path of the inter-
pretation process. This algorithm’s final step accomplishes
edge-based requirements interpretation. Here, we have
interpreted the requirements using the shortest path based on
the weight of the edges, which increases the accuracy of the
interpretation process.

In Algorithm 6, tokens correspond to the document’s
nodes. When this token is combined with another token in
a document, a connection in the form of an edge is created.
Therefore, the significance of a pair of edges increases as
it appears more frequently. We can determine whether a
requirement is ambiguous or not based on the edge weights.
To comprehend this procedure, consider a running example.
Consider the following stipulation R.
R = ‘‘The system shall display similar books based on the
user preferences of other users who purchased the same book
during previous sessions’’.
R’ = {‘system’, ‘shall’, ‘display’, ‘similar’, ‘book’,
‘base’, ‘user’, ‘prefer’, ‘user’, ‘purchas’, ‘book’, ‘previou’,
‘session’};
Based on the approach, following combinations or paths are
formed: P1(R) = {(‘system’, ‘shall’), (‘display’, ‘similar’),
‘user’, ‘may’, ‘avail’, (‘book’, ‘base’), ‘movi’, ‘user’, (‘user’,
‘prefer’), (‘user’, ‘purchas’), ‘onlin’, ‘store’, ‘will’, ‘play’,
‘music’, (‘book’, ‘previou’),‘movi’, ‘user’, ‘session’};
P2(R) = {(‘system’, ‘shall’),‘drama, ‘user’ (‘display’,
‘similar’), ‘stories’ (‘book’, ‘base’), (‘user’, ‘prefer’), ‘item’,
‘will’, ‘play’, ‘music’, (‘user’, ‘purchas’), (‘book’ ‘previou’),
‘list’, ‘user’, ‘session’}.

Finally, we find the similarity between retrieved interpre-
tations to decide whether the given set of requirements is
ambiguous or unambiguous. {‘user’, ‘will’, ‘play’, ‘music’}
are common terms in both paths. More similarity between
retrieved interpretations shows unambiguous requirements
and vice versa. After using this technique [1], [2] to detect
ambiguity Ferrari et al. [41] proposed another technique to
detect pragmatic ambiguity for ranking ambiguous terms.
This approach works to detect ambiguity in Cross-domain
while our approach works for the same domain.

Algorithm 6 Build Edges Path (P, V, E, W)
Input: (P, V, E, W)
Output: update path weight
1: Tokens← List of nodes
2: T← Tokens
3: CT← current Token
4: e← CT, CT[i+1]
5: Net← Nodes in complete documents
6: W←Weight
7: CNewEdge← CurrentNewEdge
8: for T do
9: if Net.has_Edge(E) then
10: X[e] = X[e] + 1
11: end if
12: end for
13: (We have created a new list of edges) New
14: for CNewEdge do
15: if CNewEdge % 2 == 0 then
16: TrimmedEdgesList.add(NewEdge)
17: for currentEdge in trimmedEdgesList do
18: if currentEdge % 2 == 0 then
19: Node2.add(currentEdge).add(Second node)
20: else
21: Node1.add(currentEdge).add(Second node)
22: end if
23: end for
24: NewEdge = (Node1[i], Node2[i])
25: (i.hasEdge in Net)
26: (increase weight of edge i)
27: Add update path weight
28: end if
29: end for

IV. EXPERIMENTAL RESULTS
This section presents detailed information on the experi-
mental evaluation of the proposed CMM approach. Table 4
represents the list of domain documents that are used in the
experiments with different combinations of documents. The
documents are taken from the same dataset that has been
used in existing work [2]. The objective is to perform a fair
comparison with existing works and differentiate between
the performance of the proposed approach from existing
approaches.

Table 5 represents the combinations of documents, which
we have used in k−th analysis for both existing and proposed
approaches. We have evaluated the result three times with
six documents with different combinations of documents to
analyze the difference between the existing and proposed
approaches.

A. EVALUATION OF RESULTS
First, we have performed j − th analysis (j = 1, . . . , k) with
different combinations of documents to find the similarity
value for each requirement (RiϵR). j − th analysis provides
values each time σ

j
Ri(EE1,EE2, . . . ,EEn). We combine

VOLUME 12, 2024 15657

K. Aslam et al.: Detecting Pragmatic Ambiguity in Requirement Specification

TABLE 4. Domain documents used in this study.

TABLE 5. Combinations of documents for each k-th analysis.

j − th analysis values by
∑

(Ri) to get an aggregate value.
We compare the value of σ (Ri), σmin(Ri) with the threshold
value to know if the requirement is ambiguous or not
ambiguous. Values of σmin(Ri), σ (Ri) below the threshold
indicate the presence of ambiguity. Two methods are selected
to compute the value of

∑
(Ri): one for average value second

for minimum value.

B. AVERAGE AND MINIMUM VALUE
The average value is calculated using Equation 1

σRi =
{σ 1(Ri)+ σ 2(Ri)+ . . .+ σ k (Ri)}

k
=

∑
(Ri) (1)

The minimum value is calculated using Equation 2

σmin(Ri) = min{σ 1(Ri)+ σ 2(Ri)+ . . .+ σ k (Ri)}

=

∑
(Ri) (2)

For all values of
∑

(Ri), where (Ri = I , . . . ,m) we have
computed threshold value by arithmetic mean.

T =
{
∑

(R1)+
∑

(R2)+ . . .+
∑

(Rm)}
m

(3)

Here, σ calculated using Equation 1 and σmin calculated
using Equation 2 represent two different methods to analyze
the ambiguity of requirements. To understand all of the
evaluationmethods in their proper context, a running example
is provided below. A similar example has been considered
in [1] and [2]. As an illustration, we have a list of five
requirements to meet.
• R= ‘‘R1: Systems supporting OM should support
multiple deployment options (e.g., client-server, discon-
nected, and potentially web-based)’’.

• R2: ‘‘Systems supporting OM should provide the ability
for computers in disconnected mode to reconnect to
a server to share OM data among other computers
that operate in disconnected mode OM data should be
synchronized so that all instances of OM applications
working from the same server are able to share and use
the same data’’.

TABLE 6. Combinations of documents for each kth analysis.

TABLE 7. kth analysis values for each requirement.

• R3: ‘‘Systems supporting OM should be able to
electronically record and store data from remote devices
that may be uploaded to an aggregating system’’.

• R4: ‘‘Systems supporting OM should be capable of
using configurable, domain-specific vocabulary’’.

• R5: ‘‘Systems supporting OM should have the ability to
record the case definition for a health event’’.

We have performed k th analysis three times (J = 1, . . . , k)
for each requirement R1, R2, R3, R4, R5 all details are
mentioned in Table 6.

Table 6 depicts the requirements sets that we used for
each iteration in conjunction with a variety of documents
to determine whether the requirements are ambiguous.
Each iteration utilized the same requirement sets, but the
documents were combined in a variety of ways.

Table 7 shows the k th analysis values for each requirement
R1 to R7. The threshold for minimum and average value is
0.1306 while the average value is 1.0884. After computing
the Threshold, we need to calculate precision and recall.
Precision and recall metrics are employed to find the
accuracy of results. Total requirements are 114 and manually
predicted requirements marked as ambiguous are 43.We have
computed threshold (0σmin 0.33552, average 0.51006) by
three analyses in this case study.

We compare the ratio of manually predicted requirements,
which are marked as ambiguous with our system-generated
result. We calculated that the system detected 60 require-
ments as ambiguous and 54 as not ambiguous. The proposed
approach predicted 39 requirements as ambiguous rightly
as per manually tagged requirements as ambiguous. So we
computed a precision of 65% and recall of 90%.

C. VALIDITY CRITERIA
Precision and recall are extensively employed evaluation
metrics in information retrieval and binary classification
applications. They provide insight into the accuracy and
completeness of a model or system’s performance.

Precision is the degree to which a model or system
correctly detects relevant examples. It computes the ratio
of accurately predicted positive cases (true positives) to
all positive instances anticipated (true positives plus false

15658 VOLUME 12, 2024

K. Aslam et al.: Detecting Pragmatic Ambiguity in Requirement Specification

TABLE 8. Comparison of CMM results with existing approaches.

positives). In other words, precision quantifies the degree of
correctness or precision of the model’s positive predictions.
It determines the ratio of correct positive predictions to the
total number of positive predictions and is represented as
follows.

Precision =
TP

TP+ FP
(4)

Recall, also called sensitivity or true positive rate, shows
the capability of an approach to correctly identify all positive
cases. It computes the ratio of successfully predicted positive
instances, also known as true positives, to all actual positive
instances, which are represented by true positives plus
false negatives. Recall quantifies the degree to which the
model’s positive predictions are exhaustive. It determines the
proportion of correct positive predictions to the total number
of positives, which is depicted below.

Recall =
TP

TP+ FN
(5)

D. PERFORMANCE COMPARISON WITH EXISTING
APPROACHES
To find accurate accuracy we performed experiments with
the existing approach [2] and the current approach with the
same data set and results are given in Table 8. We have
also compared the proposed approach with another recent
existing approach [13] detecting ambiguity in requirement
specification using a knowledge dictionary. The comparison
of results given in Table 8 shows the superior performance of
the proposed CMM approach.

Please note that σ calculated using Equation 1 and σmin
calculated using Equation 2 represent two different methods
to analyze the ambiguity of requirements by comparing
similarity with a threshold value. The evaluation of the
outcomes is based on the determination of both the mean and
minimum precision and recall values. The precision value
reflects the accuracy or correctness of positive predictions,
reflecting the degree to which the models properly identify
important situations. The recall value, on the other hand,
shows the comprehensiveness or completeness of positive
predictions and measures the models’ ability to recognize all
real positive events. By evaluating both precision and recall,
it is possible to conduct a full evaluation of the performance
of the current and existing techniques, thereby gaining insight
into the accuracy and completeness with which they capture
significant instances. The result shows that the CMM model
outperforms the existing work in identifying ambiguities in
requirement specifications. Similarly, we have compared our

FIGURE 3. Result Comparison between Existing and Current Approach.

proposed approach with another recently presented existing
study [13]. The study presented a method for identifying
ambiguity in requirement specifications using a knowledge
dictionary constructed by emphasizing transitive verbs and
their associated objects in both requirement specifications
and supporting documents. Although the existing approach
has potential but as compared to the results of our proposed
model (CMM) clearly presented better performance as
compared to this existing work.

Figure 3 provides a visual representation of the comparison
derived from the data. The goal of this figure is to show
how precision and recall are related, giving a more complete
picture of what is shown in Table 8. presents the same
results as those found in Table 8. It provides a graphical
representation of the results for both the existing approaches
and the proposed approach.

V. CONCLUSION AND FUTURE WORK
Pragmatic ambiguity complicates the understanding of nat-
ural language requirements and the product cannot meet
consumer needs without proper context. Readers interpret
requirements differently based on background knowledge
which leads to ambiguity. This study addressed this challenge
by reducing requirement misinterpretations. The proposed
CMM approach is found on graph-based artificial subjects
that model the domain background knowledge. After building
a domain knowledge graph from domain documents, it uses
the shortest path to capture the true relationship among
requirements. The shortest path activates highly weighted
concepts in a weighted graph to interpret requirements. Acti-
vating highly weighted concepts in graphs indicates domain
document concept relatedness. Existing methods retrieve
concepts from nodes. Based on two neighboring nodes with
higher domain knowledge graph occurrences, the shortest
path algorithm returns more matching results. Edge-based
retrieval of concepts improves requirement interpretation.
As per the designed approach, we input a set of require-
ments and multiple domain documents, where requirements
are searched in provided domain documents and receive
different interpretations from each domain document. Finally,
we find the similarity between retrieved interpretations to

VOLUME 12, 2024 15659

K. Aslam et al.: Detecting Pragmatic Ambiguity in Requirement Specification

decide whether the given set of requirements is ambiguous
or unambiguous (i.e., More similarity between retrieved
interpretations shows unambiguous requirements and vice
versa). We evaluated CMM and observed a precision of
65% and a recall of 90%, surpassing the performance of the
existing approach which achieved 51% precision and 63%
recall. These findings indicate a significant improvement over
current methods and demonstrate the effectiveness of the
proposed approach. The current study focuses on reducing
pragmatic ambiguity by identifying shortest paths based on
nodes and edges. In the future, we aim to achieve better
performancewith extended paths and auto-selected document
input. Additionally, we intend to integrate a larger data
set of requirements to investigate the impact of time and
requirement quantity.

REFERENCES
[1] A. Ferrari, G. Lipari, S. Gnesi, and G. O. Spagnolo, ‘‘Pragmatic ambiguity

detection in natural language requirements,’’ in Proc. IEEE 1st Int.
Workshop Artif. Intell. Requirements Eng. (AIRE), Aug. 2014, pp. 1–8.

[2] A. Ferrari and S. Gnesi, ‘‘Using collective intelligence to detect pragmatic
ambiguities,’’ in Proc. 20th IEEE Int. Requirements Eng. Conf. (RE),
Sep. 2012, pp. 191–200.

[3] G. Huzooree and V. D. Ramdoo, ‘‘A systematic study on requirement
engineering processes and practices in Mauritius,’’ Int. J. Adv. Res.
Comput. Sci. Softw. Eng., vol. 5, no. 2, pp. 40–46, 2015.

[4] M. Satpathy, R. Harrison, C. Snook, and M. Butler, ‘‘A comparative
study of formal and informal specifications through an industrial case
study,’’ in Proc. IEEE/IFIP Workshop Formal Specification Comput. Syst.
(FSCBS), Apr. 2001, pp. 318–321.

[5] M. Luisa, F. Mariangela, and N. I. Pierluigi, ‘‘Market research for
requirements analysis using linguistic tools,’’ Requirements Eng., vol. 9,
pp. 40–56, 2004.

[6] U. S. Shah and D. C. Jinwala, ‘‘Resolving ambiguities in natural language
software requirements: A comprehensive survey,’’ ACM SIGSOFT Softw.
Eng. Notes, vol. 40, no. 5, pp. 1–7, Sep. 2015.

[7] A. K.Massey, R. L. Rutledge, A. I. Antón, and P. P. Swire, ‘‘Identifying and
classifying ambiguity for regulatory requirements,’’ in Proc. IEEE 22nd
Int. Requirements Eng. Conf. (RE), Aug. 2014, pp. 83–92.

[8] M. Bano, ‘‘Addressing the challenges of requirements ambiguity: A review
of empirical literature,’’ in Proc. IEEE 5th Int. Workshop Empirical
Requirements Eng. (EmpiRE), Aug. 2015, pp. 21–24.

[9] B. Gleich, O. Creighton, and L. Kof, ‘‘Ambiguity detection: Towards
a tool explaining ambiguity sources,’’ in Proc. 16th Int. Working Conf.
Requirements Eng. Foundation Softw. Quality (REFSQ), Essen, Germany.
Berlin, Germany: Springer, Jun. 2010, pp. 218–232.

[10] A. Ferrari, B. Donati, and S. Gnesi, ‘‘Detecting domain-specific ambi-
guities: An NLP approach based on Wikipedia crawling and word
embeddings,’’ in Proc. IEEE 25th Int. Requirements Eng. Conf. Workshops
(REW), Sep. 2017, pp. 393–399.

[11] N. Hussain, H. T. Mirza, F. Iqbal, A. Altaf, A. Shoukat, M. G. Villar,
E. S. Flores, M. A. R. Gutiérrez, and I. Ashraf, ‘‘PRUS: Product
recommender system based on user specifications and customers reviews,’’
IEEE Access, vol. 11, pp. 81289–81297, 2023.

[12] M. Dar, F. Iqbal, R. Latif, A. Altaf, and N. S. M. Jamail, ‘‘Policy-
based spam detection of tweets dataset,’’ Electronics, vol. 12, no. 12,
p. 2662, Jun. 2023. [Online]. Available: https://www.mdpi.com/2079-
9292/12/12/2662

[13] T. Kato and K. Tsuda, ‘‘A method of ambiguity detection in require-
ment specifications by using a knowledge dictionary,’’ Proc. Comput.
Sci., vol. 207, pp. 1482–1489, Jan. 2022. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S1877050922010882

[14] J. Edwards, T. Cassidy, G. deMel, and T. F. L. Porta, ‘‘Integrating quality of
information with pragmatic assistance,’’ in Proc. IEEE Int. Conf. Pervasive
Comput. Commun. Workshops (PerCom Workshops), Mar. 2016, pp. 1–7.

[15] H. Roopa and S. Panneer Arockiaraj, ‘‘The role of artificial neural
network in word sense disambiguation (WSD)—A survey,’’ in Rising
Threats in Expert Applications and Solutions. Singapore: Springer, 2022,
pp. 221–227.

[16] S. Ezzini, S. Abualhaija, C. Arora, M. Sabetzadeh, and L. C. Briand,
‘‘Using domain-specific corpora for improved handling of ambiguity in
requirements,’’ in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE),
May 2021, pp. 1485–1497.

[17] S. Mishra and A. Sharma, ‘‘On the use of word embeddings for
identifying domain specific ambiguities in requirements,’’ in Proc.
IEEE 27th Int. Requirements Eng. Conf. Workshops (REW), Sep. 2019,
pp. 234–240.

[18] S. Kaddoura, R. D. Ahmed, and J. H. D., ‘‘A comprehensive review
on Arabic word sense disambiguation for natural language processing
applications,’’ WIREs Data Mining Knowl. Discovery, vol. 12, no. 4,
p. e1447, Jul. 2022.

[19] F. Ashfaq and I. S. Bajwa, ‘‘Natural language ambiguity resolution by
intelligent semantic annotation of software requirements,’’ Automated
Softw. Eng., vol. 28, no. 2, pp. 1–45, Nov. 2021.

[20] G. Malik, M. Cevik, D. Parikh, and A. Basar, ‘‘Identifying the requirement
conflicts in SRS documents using transformer-based sentence embed-
dings,’’ 2022, arXiv:2206.13690.

[21] V. K. C. Manam, J. D. Thomas, and A. J. Quinn, ‘‘TaskLint: Automated
detection of ambiguities in task instructions,’’ in Proc. AAAI Conf. Human
Comput. Crowdsourcing, Oct. 2022, vol. 10, no. 1, pp. 160–172.

[22] S. Ezzini, S. Abualhaija, C. Arora, and M. Sabetzadeh, ‘‘Automated
handling of anaphoric ambiguity in requirements: A multi-solution study,’’
in Proc. IEEE/ACM 44th Int. Conf. Softw. Eng. (ICSE), May 2022,
pp. 187–199.

[23] A. Yadav, A. Patel, and M. Shah, ‘‘A comprehensive review on resolving
ambiguities in natural language processing,’’ AI Open, vol. 2, pp. 85–92,
Jan. 2021.

[24] M. Osama, A. Zaki-Ismail, M. Abdelrazek, J. Grundy, and A. Ibrahim,
‘‘Score-based automatic detection and resolution of syntactic ambiguity
in natural language requirements,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep. 2020, pp. 651–661.

[25] S. Saxena, U. Chaurasia, N. Bansal, and P. Daniel, ‘‘Improved unsu-
pervised statistical machine translation via unsupervised word sense
disambiguation for a low-resource and Indic languages,’’ IETE J. Res.,
pp. 1–11, Jul. 2022.

[26] R. S. Satpute and A. Agrawal, ‘‘A critical study of pragmatic ambiguity
detection in natural language requirements,’’ Int. J. Intell. Syst. Appl. Eng.,
vol. 11, no. 3s, pp. 249–259, 2023.

[27] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios, ‘‘DataTone:
Managing ambiguity in natural language interfaces for data visualization,’’
in Proc. 28th Annu. ACM Symp. User Interface Softw. Technol., Nov. 2015,
pp. 489–500.

[28] B. Kumar, H. B. Maringanti, and K. Asawa, ‘‘Adaptive pragmatic analysis
of natural language,’’ in Proc. 1st Int. Conf. Intell. Interact. Technol.
Multimedia, Dec. 2010, pp. 236–240.

[29] A. O. J. Sabriye and W. M. N. W. Zainon, ‘‘An approach for detecting
syntax and syntactic ambiguity in software requirement specification,’’
J. Theor. Appl. Inf. Technol., vol. 96, no. 8, pp. 2275–2284, 2018.

[30] A. O. J. Sabriye and W. M. N. W. Zainon, ‘‘A framework for detecting
ambiguity in software requirement specification,’’ in Proc. 8th Int. Conf.
Inf. Technol. (ICIT), May 2017, pp. 209–213.

[31] S. Lee, D. Lee, S. Kang, and S.-G. Lee, ‘‘A pragmatic approach to realizing
context-aware personal services,’’ in Proc. IEEE/WIC/ACM Int. Conf. Web
Intell. Intell. Agent Technol., Dec. 2008, pp. 517–520.

[32] M. Q. Riaz, W. H. Butt, and S. Rehman, ‘‘Automatic detection of
ambiguous software requirements: An insight,’’ in Proc. 5th Int. Conf. Inf.
Manage. (ICIM), Mar. 2019, pp. 1–6.

[33] M. Ramzan, M. Shoaib, A. Altaf, S. Arshad, F. Iqbal, Á. K. Castilla,
and I. Ashraf, ‘‘Distributed denial of service attack detection in network
traffic using deep learning algorithm,’’ Sensors, vol. 23, no. 20, p. 8642,
Oct. 2023.

[34] K. Ahmed, A. Altaf, N. S. M. Jamail, F. Iqbal, and R. Latif, ‘‘ADAL-
NN: Anomaly detection and localization using deep relational learning
in distributed systems,’’ Appl. Sci., vol. 13, no. 12, p. 7297, Jun. 2023.
[Online]. Available: https://www.mdpi.com/2076-3417/13/12/7297

[35] F. Iqbal, A. Altaf, Z. Waris, D. G. Aray, M. A. L. Flores, I. D. L. T. Díez,
and I. Ashraf, ‘‘Blockchain-modeled Edge-Computing-Based smart home
monitoring system with energy usage prediction,’’ Sensors, vol. 23, no. 11,
p. 5263, Jun. 2023. [Online]. Available: https://www.mdpi.com/1424-
8220/23/11/5263

[36] S. Farooq, A. Altaf, F. Iqbal, E. B. Thompson, D. L. R. Vargas,
I. D. L. T. Díez, and I. Ashraf, ‘‘Resilience optimization of post-quantum
cryptography key encapsulation algorithms,’’ Sensors, vol. 23, no. 12,
p. 5379, Jun. 2023. [Online]. Available: https://www.mdpi.com/1424-
8220/23/12/5379

15660 VOLUME 12, 2024

K. Aslam et al.: Detecting Pragmatic Ambiguity in Requirement Specification

[37] H. Farooq, A. Altaf, F. Iqbal, J. C. Galán, D. G. Aray, and I. Ashraf,
‘‘DrunkChain: Blockchain-based IoT system for preventing drunk driving-
related traffic accidents,’’ Sensors, vol. 23, no. 12, p. 5388, Jun. 2023.
[Online]. Available: https://www.mdpi.com/1424-8220/23/12/5388

[38] A. Altaf, F. Iqbal, R. Latif, B. M. Yakubu, S. Latif, and H. Samiullah,
‘‘A survey of blockchain technology: Architecture, applied domains,
platforms, and security threats,’’ Social Sci. Comput. Rev., vol. 41, no. 5,
pp. 1941–1962, Oct. 2023, doi: 10.1177/08944393221110148.

[39] X. Li and Z. Ma, ‘‘Computational pragmatics: A survey in China and the
world,’’ in Proc. 2nd Int. Conf. Natural Lang. Process. Inf. Retr., Sep. 2018,
pp. 65–69.

[40] K. A. Mohamed, J. Din, and S. Baharom, ‘‘A tool to detect prag-
matic ambiguity with possible interpretations suggestion in software
requirement specifications,’’ Int. J. Synergy Eng. Technol., vol. 3, no. 2,
pp. 52–60, 2022.

[41] A. Ferrari, A. Esuli, and S. Gnesi, ‘‘Identification of cross-domain
ambiguity with language models,’’ in Proc. 5th Int. Workshop Artif. Intell.
Requirements Eng. (AIRE), Aug. 2018, pp. 31–38.

[42] A. Ferrari, P. Spoletini, and S. Gnesi, ‘‘Ambiguity and tacit knowledge
in requirements elicitation interviews,’’ Requirements Eng., vol. 21, no. 3,
pp. 333–355, Sep. 2016.

KHADIJA ASLAM received the master’s degree
in computer science from the University of
Lahore. Currently, she is a Senior Software
Quality Assurance Engineer with Strategic Sys-
tems International, Pakistan, leveraging more than
seven years of practical experience to uphold the
quality and dependability of software applications.
Her current research interests include testing
methodologies and addressing challenges related
to achieving clear and unambiguous requirements

for requirement specification.

FAIZA IQBAL received the Ph.D. degree from
NUST, Pakistan. She directs multiple IoT-based
software development initiatives. She is currently
with the Department of Computer Science, Uni-
versity of Engineering and Technology, Lahore,
Pakistan. Her current research interests include the
IoT-based smart applications, knowledge-based
systems, network optimization modeling, and data
analytics for high-performance protocol design.
Professionally, she serves as a member of the

Program Committee and the Technical Committee and a reviewer panel for
several international journals and conferences. She received the Pakistan’s
Higher Education Commission Indigenous Scholarship for the M.S. degree
leading to the Ph.D. degree.

AYESHA ALTAF received the M.S. and Ph.D.
degrees in information security from NUST,
Pakistan, in 2009 and 2021, respectively. She
is currently an Academician and a Researcher
of cyber security. She is also an Assistant
Professor with the Department of Computer Sci-
ence, University of Engineering and Technology
Lahore, Lahore, Pakistan. Her professional ser-
vices include industry consultation, workshops
organizer/resource person (workshops/seminars),

and a technical program committee member, teaching (U.G./P.G./Ph.D.)
courses, research and development, and reviewing for various international
journals/conferences. She has almost 15 years of experience teaching at the
university level. She has published many scientific research publications
in major international journals (ISI-Indexed), such as IEEE INTERNET OF

THINGS JOURNAL, Journal of Network and Computer Applications (Elsevier),
Journal of Systems Architecture (Elsevier), IEEEACCESS, andComputers and
Electrical Engineering (Elsevier), with a cumulative IF of more than 60.

NAVEED HUSSAIN received the Ph.D. degree
in computer science from Comsats University
Islamabad, Lahore Campus, Pakistan. He is cur-
rently an Assistant Professor with the Department
of Software Engineering, University of Central
Punjab, Pakistan. He has published several articles
in reputed journals. His research interests include
data mining, sentimental analysis, machine learn-
ing, and opinion mining.

MÓNICA GRACIA VILLAR is currently with Universidad Europea del
Atlántico, Santander, Spain. He is also affiliated with Universidade
Internacional do Cuanza, Kuito, Bié, Angola, and Fundación Universitaria
Internacional de Colombia, Bogotá, Colombia.

EMMANUEL SORIANO FLORES received the
bachelor’s degree (Hons.) in business administra-
tion, the master’s degree in financial management,
the master’s degree in corporate business commu-
nication, themaster’s degree in China–Asia Pacific
business, the master’s degree in international
business administration, the master’s degree in
educational innovation, and the Ph.D. degree in
higher education. He has experience as a Professor
and a Researcher at various universities in Mexico

and Spain. He is currently the Coordinator of the Master in Business
Administration with the European University of the Atlantic, Spain.

ISABEL DE LA TORRE DÍEZ is currently a
Professor with the Department of Signal Theory
and Communications and Telematic Engineering,
University of Valladolid, Spain, where she is
also the Leader of the GTe Research Group
(http://sigte.tel.uva.es). Her research interests
include the design, development, and evaluation of
telemedicine applications, services and systems,
e-health, m-health, electronic health records
(EHRs), EHRs standards, biosensors, cloud and

fog computing, data mining, quality of service (QoS), and quality of
experience (QoE) applied to the health field.

IMRAN ASHRAF received the M.S. degree
(Hons.) in computer science from the Blekinge
Institute of Technology, Karlskrona, Sweden,
in 2010, and the Ph.D. degree in information
and communication engineering from Yeungnam
University, South Korea, in 2018. He was a
Postdoctoral Fellow with Yeungnam University,
Gyeongsan, South Korea, where he is currently an
Assistant Professor with the Information andCom-
munication Engineering Department. His research

interests include positioning using next-generation networks, communica-
tion in 5G and beyond, location-based services in wireless communication,
smart sensors (LIDAR) for smart cars, and data analytics.

VOLUME 12, 2024 15661

http://dx.doi.org/10.1177/08944393221110148

