Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Artículos y libros
Cerrado
Inglés
Smart vehicle parking is a collaborative effort of technology and human innovation where the efforts are to be minimized to save time and efforts. In smart cities it is one of the common challenges to introduce smart parking to increase parking efficiency and combat numerous issues like identification of free parking slot and real-time dynamic updation on traffic to save fuel and energy. In this work, a new cloud-based smart parking architecture is proposed that can help in predicting the available free parking slots in smart cities. Initially, the methodology collects the car count at any near by parking using Internet of Things (IoT) and Cloud-based approach. Later, the approach uses the Kernel Least Mean Square algorithm to make heuristic predictions about future vacancy using auto-regression. The proposed approach thus utilizes the online learning or model training. To validate the efficacy of the proposed work, the testing is done on the real-time dataset. The extensive numerical investigation is performed on parking lots of four international airports of a smart city in actual deployment scenarios. The experimentation has revealed superior performance of the method in terms of vacancy prediction.
metadata
Anand, Divya; Singh, Aman; Alsubhi, Khalid; Goyal, Nitin; Abdrabou, Atef; Vidyarthi, Ankit y Rodrigues, Joel J. P. C.
mail
divya.anand@uneatlantico.es, aman.singh@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR
(2022)
A Smart Cloud and IoVT-Based Kernel Adaptive Filtering Framework for Parking Prediction.
IEEE Transactions on Intelligent Transportation Systems.
pp. 1-9.
ISSN 1524-9050