eprintid: 11322 rev_number: 8 eprint_status: archive userid: 2 dir: disk0/00/01/13/22 datestamp: 2024-03-18 23:30:19 lastmod: 2024-03-18 23:30:21 status_changed: 2024-03-18 23:30:19 type: article metadata_visibility: show creators_name: Islam, Md. Milon creators_name: Shafi, Imran creators_name: Din, Sadia creators_name: Farooq, Siddique creators_name: Díez, Isabel de la Torre creators_name: Breñosa, Jose creators_name: Martínez Espinosa, Julio César creators_name: Ashraf, Imran creators_id: creators_id: creators_id: creators_id: creators_id: creators_id: josemanuel.brenosa@uneatlantico.es creators_id: ulio.martinez@unini.edu.mx creators_id: title: Design and development of patient health tracking, monitoring and big data storage using Internet of Things and real time cloud computing ispublished: pub subjects: uneat_eng divisions: uneatlantico_produccion_cientifica divisions: unincol_produccion_cientifica divisions: uninimx_produccion_cientifica divisions: uninipr_produccion_cientifica divisions: unic_produccion_cientifica full_text_status: public abstract: With the outbreak of the COVID-19 pandemic, social isolation and quarantine have become commonplace across the world. IoT health monitoring solutions eliminate the need for regular doctor visits and interactions among patients and medical personnel. Many patients in wards or intensive care units require continuous monitoring of their health. Continuous patient monitoring is a hectic practice in hospitals with limited staff; in a pandemic situation like COVID-19, it becomes much more difficult practice when hospitals are working at full capacity and there is still a risk of medical workers being infected. In this study, we propose an Internet of Things (IoT)-based patient health monitoring system that collects real-time data on important health indicators such as pulse rate, blood oxygen saturation, and body temperature but can be expanded to include more parameters. Our system is comprised of a hardware component that collects and transmits data from sensors to a cloud-based storage system, where it can be accessed and analyzed by healthcare specialists. The ESP-32 microcontroller interfaces with the multiple sensors and wirelessly transmits the collected data to the cloud storage system. A pulse oximeter is utilized in our system to measure blood oxygen saturation and body temperature, as well as a heart rate monitor to measure pulse rate. A web-based interface is also implemented, allowing healthcare practitioners to access and visualize the collected data in real-time, making remote patient monitoring easier. Overall, our IoT-based patient health monitoring system represents a significant advancement in remote patient monitoring, allowing healthcare practitioners to access real-time data on important health metrics and detect potential health issues before they escalate. date: 2024-03 publication: PLOS ONE volume: 19 number: 3 pagerange: e0298582 id_number: doi:10.1371/journal.pone.0298582 refereed: TRUE issn: 1932-6203 official_url: http://doi.org/10.1371/journal.pone.0298582 access: open language: en citation: Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica Fundación Universitaria Internacional de Colombia > Investigación > Producción Científica Universidad Internacional Iberoamericana México > Investigación > Producción Científica Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica Universidad Internacional do Cuanza > Investigación > Producción Científica Abierto Inglés With the outbreak of the COVID-19 pandemic, social isolation and quarantine have become commonplace across the world. IoT health monitoring solutions eliminate the need for regular doctor visits and interactions among patients and medical personnel. Many patients in wards or intensive care units require continuous monitoring of their health. Continuous patient monitoring is a hectic practice in hospitals with limited staff; in a pandemic situation like COVID-19, it becomes much more difficult practice when hospitals are working at full capacity and there is still a risk of medical workers being infected. In this study, we propose an Internet of Things (IoT)-based patient health monitoring system that collects real-time data on important health indicators such as pulse rate, blood oxygen saturation, and body temperature but can be expanded to include more parameters. Our system is comprised of a hardware component that collects and transmits data from sensors to a cloud-based storage system, where it can be accessed and analyzed by healthcare specialists. The ESP-32 microcontroller interfaces with the multiple sensors and wirelessly transmits the collected data to the cloud storage system. A pulse oximeter is utilized in our system to measure blood oxygen saturation and body temperature, as well as a heart rate monitor to measure pulse rate. A web-based interface is also implemented, allowing healthcare practitioners to access and visualize the collected data in real-time, making remote patient monitoring easier. Overall, our IoT-based patient health monitoring system represents a significant advancement in remote patient monitoring, allowing healthcare practitioners to access real-time data on important health metrics and detect potential health issues before they escalate. metadata Islam, Md. Milon; Shafi, Imran; Din, Sadia; Farooq, Siddique; Díez, Isabel de la Torre; Breñosa, Jose; Martínez Espinosa, Julio César y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, SIN ESPECIFICAR (2024) Design and development of patient health tracking, monitoring and big data storage using Internet of Things and real time cloud computing. PLOS ONE, 19 (3). e0298582. ISSN 1932-6203 document_url: http://repositorio.unib.org/id/eprint/11322/1/journal.pone.0298582.pdf